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Abstract. Equipment health assessment is a fundamental task in pre-
dictive equipment maintenance practice, which aims to predict the health
of equipment based on information about the equipment and its oper-
ation, thus avoiding unexpected equipment failures. In the current con-
text, equipment health assessment based on sequential deep learning
methods is becoming more and more popular, however, such methods
ignore the inter-device correlations, leading to their lack of readiness for
health assessment of a large number of devices. To address this problem,
this paper proposes a node-embedding-based device health assessment
method, which creatively introduces a graph model for device health as-
sessment and effectively improves the performance of health assessment.
Firstly, this paper proposes a way to define equipment association graphs.
Secondly, we introduce the node embedding technique to extract graph
information. Finally, an equipment health assessment method based on
the equipment association graph is proposed. Experiments show that the
proposed method outperforms the existing prevailing methods.
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1 Introduction

With the improvement of information equipment automation [15, 29] and inte-
gration [28, 33, 34] technology, the classic equipment asset management method
can no longer satisfy the requirements of current equipment management. A
large number of basic information data [?,?,?] and operation status data [?,?,?]
derived from routers, switches [22,27,32] and professional production equipment
are beyond the analysis capability of traditional expert experience, and there is
an urgent need for intelligent analysis methods [24,26] to migrate and apply.

Most of the existing equipment health assessment methods are based on the
Reliability-Centered Maintenance (RCM) concept, which describes historical fail-
ure data through quantitative modeling, combined with expert evaluation to
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determine the life and reliability of equipment, so as to make preventive mainte-
nance decisions to reduce potential downtime losses [1, 35, 36, 45]. Among these
approaches, traditional methods are generally based on statistic definition and
regression analysis techniques, among which the relative healthiness model and
its improvement models are typical [2, 5, 21, 23]. However, such methods are
unable to effectively extract high-level features from the data, and their clas-
sification or prediction capabilities are insufficient, resulting in poor health as-
sessment accuracy and limited guidance for maintenance of equipment in pro-
duction environments. The development of machine learning technology has
introduced new ways of approaching equipment health assessment. The ma-
chine learning-based methods improve the evaluation accuracy to a certain ex-
tent [3, 38, 44, 46], but it also relies on the introduction of expert knowledge
and has insufficient migration capability for different application scenarios and
different device states [6, 19, 39, 43]. In recent years, deep learning-based meth-
ods have also been applied [4, 13, 18]. Some methods use sequential models to
predict the future health of equipment [17, 20, 42] , however, these methods are
only applicable to a single device and consume a large amount of computational
resources, making it difficult to land applications in real scenarios with a large
number of equipment [7, 41,47].

To address these problems, this paper aims to provide a graph structure that
can characterize the association between equipment operation information and
equipment, and propose a method for equipment health assessment based on
equipment association graphs, so that equipment health assessment can be free
from the reliance on expert knowledge. Specifically, this paper first proposes the
definition of a device association graph model and defines the node features in
the device association graph by feature extraction; subsequently, the graph fea-
tures are extracted based on the node embedding method; finally, the labels of
unknown labeled nodes are predicted based on the perceptron and the informa-
tion of known labeled nodes.

The main contributions of this paper can be summarized as follows:

1. This paper proposes a new equipment association graph definition and con-
struction method. The traditional method tends to focus on the historical
operation data [8, 11, 16] of a single equipment, and the analysis of the as-
sociation between equipment is limited to the similarity of weights in the
regression equation brought by the association of basic information such as
the same manufacturer, without obtaining the influence of the association
such as the physical location of the equipment. In contrast, the proposed
equipment association graph can effectively characterize the complex asso-
ciations between equipment and can more accurately reflect the effect of the
influencing factors on equipment health, thus obtaining more accurate health
values.

2. In this paper, we introduce node embedding based on random walk and
Word2Vec into the field of equipment health assessment, which brings a new
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perspective to the research and development of this field. Compared with
the existing methods based on statistics and machine learning, the node
embedding method reduces the dimensionality of the feature vector, which
reduces the complexity for the subsequent calculation; on the other hand,
the vector value of a device after embedding is influenced by the devices with
which it has a strong association, which can extract higher-level features and
achieve a more accurate health assessment.

3. This method is based on the graph structure for equipment health assess-
ment, and is able to predict the health of all unknown devices through a
single uniform node embedding, which solves the shortcomings of existing
deep learning-based equipment health assessment methods that focus on
single device health prediction.

4. We define the equipment characteristics through the most intuitive basic in-
formation and operation information of the equipment, and get rid of the
dependence of the existing method on expert knowledge. For different types
of equipment, the method can operate properly without the exclusive char-
acteristics defined by expert knowledge, and accurately achieve equipment
health assessment, reducing the threshold of personnel and data complete-
ness for applying the method.

2 Related Work

There are many studies on equipment health assessment models, including tra-
ditional statistical models, machine learning models, and deep learning models.
Most approaches are based on RCM concept and assess equipment health cen-
tered around remaining useful life.

2.1 Statistical Models

Earlier approaches modeled equipment health assessment based on expert knowl-
edge defining statistics under application scenarios, by such as equipment oper-
ation indicators, equipment temperature, relevant product technical indicators,
etc.; and then implemented statistical techniques such as multiple regression and
entropy correction to calculate the weights of the statistics, and finally used the
obtained relative health model to predict the health of equipment.

For example, statistical methods including hypothesis testing [21], extreme value
theory [5] and maximum-likelihood estimation [2,23] are widely used in the field
of equipment health assessment [37,40]. However, such methods rely on manual
feature construction and have difficulty in obtaining complex fusion features,
which leads to a strong dependence on feature construction for their accuracy,
further affecting their accuracy and usability.
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2.2 Machine Learning Models

Existing machine learning-based methods are also based on expert knowledge to
define key equipment features, such as basic equipment information, operating
indicators, etc., followed by feature modeling using machine learning algorithms
such as XGBoost [14] and clustering [40], and training with large amounts of
data [9, 10,31] to obtain a good classification or prediction model.

Besides, other commonly used machine learning methods include support vec-
tor machines [3, 46], Gaussian regression [38, 44], the gamma process [43], least
squares regression [6], hidden Markov model [19], and the Wiener processes
[1, 39]. Compared with statistical-based methods, this type of method improves
the model’s ability to fit the data, thus enhancing the evaluation accuracy, but it
still relies on expert knowledge and feature selection, and its automatic feature
extraction capability still needs further improvement.

2.3 Deep Learning Models

Deep learning techniques are also applied in this field, but limited by the amount
of data [12, 25, 30] and the number of labels required for deep learning models,
the migration of related technologies is still at a preliminary stage, and some
researchers have used sequential models to predict the future health of a single
device [4,13,18], but the related accuracy rate needs to be improved [17,20,42,47].
For example, [20] proposes a competition learning-based method for predicting
long-term machine health status and [42] combines multiple sensor signals and
Long Short-Term Memory (LSTM) models for modeling. In addition, there are
also many approaches based on combining GAN models with sequence models
to obtain better performance [17,47]. In addition, other network structures, such
as Convolutional Neural Networks (CNN), are gradually applied to equipment
health assessment [7,41]. For example, [7] combines CNN and LSTM to improve
the accuracy of equipment remaining useful life estimation. However, as an im-
portant part of deep learning, deep graph models have been rarely applied in
device health assessment. In particular, the graph node embedding-based ap-
proach has not yet been migrated to the field. This makes existing methods
applicable only to a single device, ignoring practical application scenarios with
a large number of devices.

3 Method

The health assessment method proposed in this paper is divided into two stages.
First, a graph structure is defined to characterize the association between equip-
ment operation information and equipment in order to free the health assessment
method from the reliance on expert knowledge, and node features in the equip-
ment association graph are defined by feature extraction. Second, the equipment
association graph is embedded based on the node embedding method and the
health level of the equipment to be evaluated is assessed. In this section, we first
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Fig. 1. Flow chart of the proposed method

define and explain the concepts and graph structure related to equipment associ-
ation graphs, then we explain how equipment association graphs are constructed,
and finally we discuss the methods for equipment health assessment based on
equipment association graphs. The complete flow of the proposed method is
shown in Fig. 1.

3.1 Definition of Concepts

Equipment information Equipment information includes basic equipment
information, equipment usage information and other information for specific
equipment types. Among them, the basic information of equipment includes
manufacturer, factory time, equipment type, etc.; equipment usage information
includes physical location of equipment, average daily working time, average
daily failure times, average daily temperature, etc.; other information for spe-
cific equipment type refers to the working information based on equipment type,
for example, network switch includes average daily forwarding volume, average
daily fan speed, etc. Based on specific scenarios and equipment, equipment infor-
mation can be added without upper limit, thus forming a more complete device
characteristic.

Equipment association Equipment association refers to the association be-
tween equipment information. If a piece of information of two equipment is the
same, it is considered that there is an association between two equipment. In
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Algorithm 1 Equipment Association Graph Construction

Input: Node Set V {vi}ni=1 where n denotes the size of nodes. Equipment information
Set I = {Ii}ni=1 where Ii denotes the equipment information of nodes vi. Size T of
equipment information Ii.
Output: Equipment Association Graph G = (V,E).

1: for vi ∈ V, vj ∈ V do
2: Eij = 0
3: for t ∈ 0, · · · , T do
4: if Iti = Itj then
5: Eij ← Eij + 1

6: G = (V,E)
7: return G

the actual production environment, the stronger the association, the more simi-
lar the health of the equipment. For example, equipment of the same batch, or
equipment running at the same temperature.

3.2 Definition of Equipment Association Graph

To effectively describe the information of equipment and the association between
the equipment, a equipment association graph needs to be constructed. As a
class of graph structures, a equipment association graph can be represented as
G =< V,E >, where V denotes the set of nodes and E denotes the set of edges.
Therefore, the definition of a equipment association graph is the definition of its
edges and nodes.

Node The proposed equipment association graph defines that each node char-
acterizes a piece of equipment and the attributes of the node are the feature
vectors composed of information about that equipment, where continuous val-
ues are normalized to the [0, 1] interval by the following equation and discrete
values are treated as one-hot encodes. The normalized processing equation is as
Equation (1).

yi =
xi −min(x)

max(x)−min(x)
(1)

where yi denotes to the normalized result of feature i, xi denotes to the value
of this device on feature i, and max(x) and min(x) denote to the maximum and
minimum values of all devices on feature i.

Subsequently, the labels of the nodes are used as the health of the equipment.
Since the health of the training set data is known, the values are directly assigned
to the corresponding nodes as labels.

Edge Each edge in the proposed equipment association graph links two nodes,
and the edges have no direction but have a weight. The construction of edges
follows the following flow.
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1. Let the weight of the edge between any two nodes be 0.

2. For any two nodes, information about their corresponding equipment is ex-
amined. For each identical field in the equipment information, the weight of
the edge between these two nodes is increased by 1.

3. Generate edges between nodes with ownership greater than 0.

Specifically, to generate the equipment association graph, we first process the
raw data and, for each equipment, generate its equipment information vector as
equipment characteristics; subsequently, we construct nodes for each equipment,
add the equipment characteristics vector as attributes, or as labels if the health
degree is known; finally, we calculate the weights between the nodes two by two
and generate edges with corresponding weights greater than 0. The equipment
association graph construction algorithm is summarized as Algorithm 1.

3.3 Equipment health assessment based on node embedding

To perform equipment health assessment based on the equipment association
graph, we first a) perform a random walk on the graph to obtain node sequences
based on the equipment association graph; subsequently b) compute node em-
bedding vectors based on the node sequences using the Woed2Vec algorithm;
and finally c) predict node labels for all labeled locations based on a three-layer
perceptron with the node embedding vectors and known labels as inputs.

First, most of the existing random walk methods can be applied to structures
such as heterogeneous graphs and heterogeneous information networks. Equip-
ment association graphs are a static class of homogeneous graphs, so the transfer
probability of random walk needs to be adjusted. Specifically, we adjust the prob-
ability of being currently at node v, which will be transferred to node t in the
next step, as Equation (2) and (3).

P (t | v) =

{
weight(t,v)

Nw(v) , (t, v) ∈ E

0, otherwise
(2)

Nw(v) =
∑
ti

weight (ti, v) (3)

where weight(t, v) denotes the weight of the edge between node t and node v,
Nw(v) denotes the sum of weights of edges between node v and all neighboring
nodes. We select the number of nodes in the path obtained by the random walk
to be 10.

Second, the Word2vec algorithm is an encoding approach and we adapt it to a
graph node embedding algorithm that embeds nodes into vectors and makes the
embedding vectors obtained by nodes with similar attributes as close as possible.
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For any node v in nv−c, ..., nv+c of the paths obtained by random walks in the
previous step, the objective function to be maximized by word2vec is

v∑
v=1

logP (nv−c, . . . , nv−1, nv+1, . . . , nv+c) (4)

The probability in the Equation (4) can be transformed into a product of a series
of probabilities, and the final objective function can be transformed into

e
V ⊤
nv

V ′
nv+j∑V

i=1 e
V T
nv

V ′
nv

(5)

where Vni
denotes the input vector of node ni (i.e., its attributes), V

′
ni

denotes
the output vector of node ni (i.e., its embedding vector), and V denotes the
number of all nodes. During the calculation of i growth to V , the above equation
calculates the embedding vector of all the nodes.

Finally, we use the embedding vectors of the nodes corresponding to all equip-
ment with known health as the input to the three-layer perceptron, and their
health values are used as the labels to be fitted to train the perceptron model.
After the training is completed the embedding vectors of the nodes with un-
known labels are fed into the perceptron model and the obtained output is the
predicted health of the corresponding nodes, i.e., the corresponding equipment.

Each layer in the three-layer perceptron is a fully connected layer, and each
neuron obeys the following formula.

output = f(net− θ) (6)

net =
∑

zi · vi (7)

Where zi denotes the output value of the ith neuron in the previous layer, vi is
the weight of the ith neuron linking this neuron in the previous layer. θ is the
deviation value of this neuron, which we set to θ. f(x) is the activation function,
and we set the activation function which is the sigmoid function.

4 Experiments

4.1 Dataset

The dataset is the equipment information and equipment association information
of servers, disk arrays, network routers, network switches, firewalls, IPS, IDS,
WAF, etc. from an enterprise in operation in China, and the comprehensive
evaluation is carried out based on the relevant information.

We use equipment information as equipment characteristics and equipment asso-
ciation information as the basis for constructing equipment association diagrams,
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and experts are invited to evaluate the health of the equipment in the dataset
in terms of years in operation, failure conditions, and product support periods,
and use the health as the dataset label.

We finally constructed a dataset consisting of 1952 devices, which were randomly
divided into training, validation, and test sets in the ratio of 8:1:1. Subsequently,
all the data are used to construct an equipment association graph according to
their relationships as input data for the proposed equipment health assessment
method. Besides equipment information, we construct features such as years in
operation, defect level, cumulative failures, percentage of failures in the most re-
cent year, business system data loss, average trouble-free operation time, product
support period, and repeated maintenance.

4.2 Evaluation

We compare our approach with the mainstream machine learning and deep learn-
ing methods. All methods use raw numerical features for normalization and cate-
gory features for one-hot encoding as input features. We not only use RMSE and
MAE as indicators of health assessment error, but also discretize health judg-
ments into healthy and unhealthy (with a cut-off of whether health is greater
than 0.5) to compare the accuracy of health trend assessment.

Among them, RMSE can be expressed as:

RMSE(X,h) =

√√√√ 1

m

m∑
i=1

(h(xi)− yi)2 (8)

where X denotes the test dataset, m denotes the test dataset size, h denotes the
health assessment model, h(xi) denotes the result of the ith test data predicted
by the model, and yi denotes the label of the ith test data. MAE can be expressed
as:

MAE(X,h) =
1

m

m∑
i=1

|h(xi)− yi| . (9)

The experimental results are shown in the Table 1.As shown in the table, the
proposed method has reduced 6.1% and 2.2% in RMSE and MAE of health
prediction and improved 2.3% in accuracy compared to recent deep learning
methods [7]. The results show that the proposed method can effectively improve
the performance of equipment health assessment and is closer to the expert
assessment results than previous methods.

4.3 Ablation

To verify the validity of the proposed method, we compared the experimental re-
sults of the proposed method with the results of the equipment health assessment
without node embedding.
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Method RMSE MAE Accuracy

SVM 42.3 33.2 78.0

XGBoost 34.8 25.1 85.2

CNN 35.6 27.9 81.8

LSTM 30.9 23.7 86.7

CNN+LSTM [7] 28.4 21.0 88.3

Proposed method 22.3 18.8 90.6

Table 1. Experimental results of comparison with prevailing methods (%)

The experimental results are displayed in Table 2, and it can be seen that the
proposed method is effective in enhancing the final assessment results. Since the
same model is used for training in both methods, the results namely show that
the proposed method can effectively improve the feature representation without
over-relying on expert knowledge.

Method RMSE MAE Accuracy

Proposed method 22.3 18.8 90.6

without node embedding 38.5 26.6 80.2

Table 2. Experimental results of comparison with the methods without node embed-
ding (%)

4.4 Hyperparameters and model selection

As mentioned earlier, we divided a portion of the training data as the validation
set. In the training, we use MSE loss as the loss function, and compare the loss on
the validation set for models trained with different combinations of hyperparam-
eters to select the model parameters. Specifically, we select stochastic gradient
descent as the optimizer, the number of walking steps from 1,2,3,4,5, the learn-
ing rate and weight decay from 0.0001,0.0005,0.001,0.005,0.01,0.05,0.1,0.5, and
the number of epochs from 100,150,200,250. The final parameters are shown in
Table 3.

5 Conclusion

In this paper, we propose a node-embedding based equipment health assessment
method that introduces a graph model in the equipment health assessment task,
which significantly reduces the RMSE and MAE of equipment health assessment
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Hyperparameter Value

Walking Steps 4

Learning Rate 0.005

Weight Decay 0.001

Epochs 200

Table 3. Selected hyperparameter value

and improves the task accuracy. Compared with previous methods, although the
proposed method has been decoupled from expert knowledge to a large extent, it
still requires a certain amount of expert annotation. In the next stage, combining
the method with semi-supervised and unsupervised methods to further reduce
the reliance on expert annotation may help to reduce the cost of the equipment
health assessment to further enhance its application value.
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