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Abstract—Multi-objective optimization has demonstrated, in
the last few years, to be an effective paradigm to tackle different
architectural problems, such as service selection, composition
and deployment. In particular, multi-objective approaches for
searching architectural configurations that optimize quality
properties (such as performance, reliability and cost) have been
introduced in the last decade. However, a relevant amount of
complexity is introduced in this context when performance are
considered, often due to expensive iterative generation of per-
formance models and interpretation of results. In this paper we
introduce EASIER (Evolutionary Approach for multi-objective
Software archltecturE Refactoring), that is an approach for
optimizing architecture refactoring based on performance and
on the intensity of changes. We focus on the actionable aspects
of architectural optimization, instead of merely searching over
a set of alternatives. We also start to investigate on the potential
influence of performance antipatterns on such process. We
have implemented our approach on Amilia ADL, so to carry
out performance analysis and architecture refactoring within
the same environment. We demonstrate the effectiveness and
applicability of our approach through its experimentation on
a case study.

I. INTRODUCTION

Since more than one decade multi-objective optimization
has been applied to several software architecture prob-
lems, and it has demonstrated to be a particularly effective
paradigm on problems that can be natively formulated
through quantifiable metrics. The optimization of quality
attributes nicely fits into this category of problems, because
these attributes (such as performance, reliability, usability)
are meaningful only if expressed through well-defined met-
rics [[1]. In fact, the ability of software engineers to satisfy
quality requirements depends on the possibility of comparing
metric values to these requirements.

With regard to architecture quality attributes, the evalua-
tion of performance metrics is a particularly complex pro-
cess, because they emerge from the combination of several
software characteristics, i.e., static, dynamic, deployment
and - in some cases - environmental ones. Beside this,
very few ADLs embed constructs to specify performance
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parameters, and even fewer ones provide tools to natively
analyze performance within the same ADL environment. In
most cases, instead, performance models are expressed in
different stochastic notations (like Queueing Networks or
Petri Nets), thus they have to be generated from architectural
specifications through model transformations [2].

Several multi-objective approaches have been introduced,
in the last decade, to optimize the performance of a software
architecture along with other quality attributes, such as
reliability and cost [3]], [4]. Many of such approaches are
based on evolutionary algorithms [5] that allow to search
the solution space by (re-)combining solutions.

A common character of these approaches is that they
search among architectural alternatives, without considering
the operational aspects induced by architectural refactoring.
Instead, with software architecture gaining relevance across
the whole lifecycle (even after software release), the path of
architectural refactoring assumes a high relevance that we
aim at considering in this paper.

We here introduce EASIER, that is an Evolutionary
Approach for Software archltecturE Refactoring, aimed at
optimizing metrics related to the performance and to the
distance from the initial architecture. EASIER deals with
genomes that represent sequences of refactoring actions
aimed at leading to optimal architectural alternatives from
an initial one. Moreover, we introduce in this context the
knowledge dwelling in performance antipatterns [6]] for
supporting the search process. Performance antipatterns are,
in fact, well-known bad practices that induce performance
degradation. As an initial study in this direction, we intend to
observe whether their introduction could improve the search
process.

Fig. [I] illustrates the EASIER high-level architecture.
The EASIER core is represented by a custom NSGA-II
algorithm [7]], namely customNSGAII, that takes as input
an initial software architecture and searches the architectural
space by (re-)combining refactoring actions extracted from
a repository, i.e., the Refactoring Actions Library in Fig.
[l The search process is driven by three main objectives
codified in a fitness function, that are a performance quality
indicator, the architectural distance (that will be expressed



as a measure of the intensity of changes induced by refac-
toring actions), and the number of performance antipatterns
occurring in the software architecture.

Figure 1: The EASIER high-level architecture.

It is important to distinguish here between quality at-
tributes that can be represented by analytical models (e.g., ar-
chitectural cost) and the ones that claim for complex models
to be solved in order to achieve an adequate accuracy with
respect to architectural details (e.g., resource contention-
based performance indices). In our case, an analytical model
underlies the architectural distance, while a Performance
Analyzer is devised (see the bottom of Fig. [I) to analyze
the performance and detect performance antipatterns within
the architecture.

EASIER produces sequences of refactoring actions that
induce, as output, in the form of a Pareto frontier, according
to its evolutionary paradigm. The latter is made of the
architectural alternatives generated by those sequences that
lead to non-dominated solutions.

The EASIER low-level architecture has been designed to
apply our evolutionary algorithm to software architectures
described in different ADLs. In Section we specify the
entry points left in EASIER for this goal, even though it
is out of this paper scope to evaluate the effort needed for
plugging new ADLs within EASIER. In this paper we have
chosen ZFmilia as our ADL context [8], mostly because
the AEmilia context natively enables performance analysis
within its own environment, without the need of generating
performance models in different notations. We have also
exploited an existing approach for performance antipattern
detection in Amilia [9].

The paper is organized as follows: Section [lI| presents the
related work, Section [[Il] illustrates our approach, Section
shows its validation on a case study, and Section[V]concludes
the paper.

II. RELATED WORK

With the continuous evolution of software systems even
after release, automation in software refactoring has become
a critical need along the whole development process [10].
In fact, many studies have been conducted in the context of
model-based software refactoring (see, e.g. [[L1]-[13]]).

However, finding the best sequence of refactoring actions
to be applied to a software artifact, in order to optimize
its quality w.r.t. to a set of metrics (a.k.a. objectives), is
a problem known to be computationally hard, due to the
typically huge space of feasible solutions [[14]. Hence, its
exhaustive solution can require large computational time
even for small-sized software artifacts. One way of ad-
dressing this issue consists in formulating the problem as
a search-based problem and tackling it via meta—heuristics
(e.g. evolutionary algorithms) that are able to compute sets
of refactoring actions that are optimal in a Pareto sense.
To this regard, a number of studies have demonstrated the
effectiveness of this strategy [[15]-[18]].

Several evolutionary algorithms have been introduced, in
the last decade, for software architecture multi-objective
optimization with respect to various quality attributes (e.g.,
reliability, performance or energy [3[, [19]-[21]) and with
different degrees of freedom to modify the architecture (e.g.,
service selection, composition or deployment [22], [23]. A
systematic literature review on architecture optimization can
be found in [1].

An interesting contribution in this direction was given
in [3]], [24]], where an evolutionary algorithm for architec-
ture optimization is guided by tactics, which are common
practices applied by experienced software engineers when
designing an architecture (e.g., fast pathing, caching). Out
of a dozen of defined tactics, the authors have implemented
three of them to observe their impact on the search al-
gorithm. However, they refer to component reallocation,
faster hardware and more hardware, so they do not represent
structured refactoring actions, as we intend to do in this
paper. Moreover, their approach starts from an architecture
specified in Palladio Component Model [25] and produces,
through model transformation, a Layered Queueing Network
for sake of performance analysis. Instead, our approach
works entirely within the Amilia ADL environment, hence
it is not subject to changes of notation that may induce
inaccuracies into the performance model.

Another relevant approach has been introduced in [26],
where architectural patterns are used to support the searching
process (e.g., load balancing, fault tolerance). The authors
introduce a whole framework for architectural design and
quality optimization. This approach suffers of two limita-
tions, that are: the architecture has to be designed in a tool-
related notation and not in a common ADL (as we do in
this paper), and it uses equation-based analytical models
for performance indices that could be too simple to capture



architectural details and resource contention.

An approach taking place in a unique environment for
modeling and analysis has appeared in [4]]. A tool is intro-
duced, based on AADL [27], aimed at optimizing different
quality attributes while varying the architecture deployment
and the component redundancy. Our paper works on a dif-
ferent ADL, that is Emilia, and it introduces more complex
refactoring actions, as well as different target attributes for
the fitness function. In addition, we investigate the role of
performance antipatterns in this context.

Hence, the major novelties of EASIER, with respect to
the existing literature, are that: (i) it works within a unique
environment for architectural modeling and analysis (i.e.,
Zmilia), (ii) it defines novel degrees of freedom aimed at
representing the operational aspects of architectural refactor-
ing, (iii) it introduces new attributes for the fitness function,
that are a performance quality indicator and an architectural
distance metrics, (iv) it starts to investigate the role of
performance antipatterns in this context, and (v) it has been
conceived to host different ADLs.

III. THE EASIER ARCHITECTURE

In this section, we describe the low-level architecture
of EASIER that is schematically illustrated in Fig. 2] The
figure is vertically divided in two swimlanes. On the left, we
report the evolutionary context of the approach, while on the
right we report the ADL context. Fig. 2] is also horizontally
divided in two major swimlanes, i.e. Data and Process. Data
are, in turn, partitioned in: metadata on which architecture
refactoring and algorithm solution are founded, and files and
libraries (i.e. knowledge) directly feeding the process.

A. Evolutionary context

The bottom left side of Fig. 2] illustrates the EASIER
core, that is a multi-objective evolutionary algorithm, namely
customNSGAI L. It essentially consists in a customization
of the well-known NSGA-II algorithm [7]], which has been
developed to properly take into account the specific nature
of the optimization problem we deal with. In particular,
we adopted JMetal as a building block, which is a well
established object—oriented Java-based framework for multi-
objective optimization with metaheuristics [28] that com-
prises a basic implementation of the NSGA-II algorithm.
The latter has been selected due to its wide adoption in the
software engineering community [29], and to its extension
capabilities. We have also been able to use some of the
available features as they were, in particular the represen-
tation/storage of objectives and solutions, as well as their
manipulation, and the selection operator [7].

Notwithstanding the reused JMetal features, the context
of our optimization problem required to heavily customize
parts of the baseline framework, by tailoring some interfaces
exposed by the latter, as detailed in the following. Before
describing the algorithm and the NSGA-II customizations

introduced in EASIER, however, we describe the main data
which customNSGAIl relies on, shown in the top left side
of Fig. 2]

1) Data: customNSGAII exploits the concept of
Solution, which contains the representation of a
genome as a Refactoring that is a sequence of
a number [en of architectural RefactoringActions.
Both Refactorings and RefactoringActions have
PreConditions and PostConditions, which are first-
order logical formulae evaluated during the evolution-
ary process to determine their feasibility. The adopted
mechanism for calculating and verifying Refactorings
and RefactoringActions pre- and post-conditions is
an implementation of the one in [30], which essentially
produces Refactoring conditions by elaborating the
conditions of its RefactoringActions. To this aim,
we have developed an approach based on: (i) an ad-
hoc metamodel supporting the definition action pre- and
post- conditions as logic formulae, and (ii) code genera-
tion facilities implementing the mechanism for calculating
and verifying Refactoring conditions while composing
RefactoringActions [30]. We do not provide details-
bec on this aspect because it is out of this paper scope.

It is worth to remark that Refactorings are in-
tended to be ‘“aggregators” of RefactoringActions,
because the latter may exist independently from the for-
mer. RefactoringActions are stored into an ad-
hoc repository named Refactoring Actions Library. A
RefactoringAction represents one of the entry points
of EASIER introduced to plug different ADL contexts, as it
will be illustrated in Section =Bl

A Solution also contains a reference to the correspond-
ing alternative architecture resulting from the application
of the genome sequence. Such alternative architectures are
assumed to be conforming to a specific ADL. The ap-
plication of each refactoring is necessary to analyze the
performance of the generated architectural alternative, as it
will be described in Section

Each Solution has three attributes that together rep-
resent the objectives of our fitness function, namely
ArchDist, PerfQ and #P As.

To ease an ADL hosting, we introduce a configuration
file to set all the required input parameters. Some of these
are related to the evolutionary process, namely len, pop,
evals, p(xover), and p(mut). In particular, [en defines the
genome length, pop (evals, resp.) determines the population
(the number of epochs, resp.) used by of the evolutionary
algorithm, whereas p(zover) and p(mut) represent the
crossover and mutation probabilities, respectively, that affect
the way the solution space is explored.

2) Process: Conformingly to the typical NSGA-II
flow [7], the first iteration of the algorithm consists of a
generation phase, aimed at randomly creating an initial



Figure 2: The EASIER low-level architecture.

population of candidate solutions (i.e. refactorings by len
length) with a pop cardinality. This phase is a customized
step where, every time CUStOmNSGAII needs to generate
a new candidate solution, a feasible Refactoring is
generated by incrementally concatenating compatible, ran-
domly generated, RefactoringActions. In particular,
two RefactoringActions aj and ajy; are said to be
compatible if and only if the preconditions of aj;; are
not violated by the postconditions of aj. Accordingly, a
Refactoring R is said to be feasible if all its consecutive

RefactoringActions are compatible [30].

After the (custom) generation of the initial population,
solutions are evaluated according to a customized fitness
function that, in EASIER, considers three objectives to
optimize, namely ArchDist, Per fQ) and #P As, which are
defined in the following.

Per f(Q (to maximize). It represents a performance quality
indicator aimed at quantifying the relative performance
improvement induced by a refactoring w.r.t. an initial ar-
chitecture, defined as follows. Let I be the result of a




performance analysis on the initial architecture w.r.t. to a
vector of ¢ performance measures of interest (e.g. through-
puts or utilizations of components of the system), and let I
denote the k—th element of this vector (e.g. a throughput
value). Moreover, let F' be the result of a performance
analysis, w.r.t. the same measures, on a generic architectural
alternative A, obtained by applying a refactoring to the
initial architecture. Analogously, let Fi denote the k—th
element of F'. Then, the performance&izlity indicator of

A is defined as PerfQ(A) = 1( p (F _H])) where

p [3+1,1} is a multiplying factor that holds: i) 1 if the j—
th measure has to be maximized (i.e., the higher the value,
the better the performance), like the throughput; ii) —1 if
the j—th measure has to be minimized (i.e., the smaller
the value, the better the performance), like response time.
In this way, a decrease (increase, resp.) in the value of a
measure that one would like to minimize (maximize, resp.)
is interpreted as a positive contribution (and viceversa). In
fact, each j—th term of the sum within the computation
of PerfQ(A) will be: i) a positive real when we aim at
minimizing (maximizing, resp.) the j—th measure and such
a measure, in the architectural alternative, exhibits a value Fj
that is smaller (larger, resp.) than that assumed in the original
architecture, i.e. Ij; ii) a negative or zero value otherwise.
Hence, architectural alternatives whose overall performance
is better (worse, resp.) than the initial one will be associated
with positive (negative, resp.) values of performance quality
indicator, as Per fQ(A) will be a positive real only when the
majority of the terms contribute with positive values. For this
reason, we consider Perf@ as part of our fitness function
(to maximize), so that refactorings leading to architectural
alternatives providing better performance are preferred over
others. Notice that, for performance measures representing
utilizations, p also holds 1 but, similarly to [26]], we define a
correction factor Aj, to be added to each j—th term above,
whose purpose is to penalize refactorings that push the
utilization too close to its maximum value of 1. In particular,
our algorithm tends to maximize utilization up to a certain
threshold, whereas utilizations higher than this threshold are
rather considered as risky. For sake of our implementation,
we adopt a threshold value of 0.8, but this can be easily
changed within EASIER. In particular, we define:

—
I iR > 08A1;> 0.8
1 if F; <0.8A1;,>08

et os
0 otherwise O

ArchDist (to minimize). It quantifies the distance of an
architectural alternative A from the initial one, in terms
of intensity of refactoring changes. The distance of A
from an initial one is defined as the sum of the distance
induced by each RefactoringAction a; in the correspond-

ing genome. Note that, in the current version of EAS-
IER, ArchDist(aj) is assumed to be predefined for each
RefactoringAction. The setting of these values is left
to software architects, because they might depend on the
characteristics of the specific ADL and/or the application
domain. O

#PAs (to minimize). It counts the number of perfor-
mance antipatterns (PAs) occurrences within an alterna-
tive architecture. In its current version, EASIER supports
OCL [31]] for antipatterns detection rules specification and
verification, which represents yet another entry point. In fact,
these rules depend on the ADL expressiveness, thus they
must be provided when plugging a new ADL context into
EASIER.

To the best of our knowledge, EASIER is the first ap-
proach that considers the number of PAs as an objective
of an evolutionary algorithm’s fitness function. Our intent
is to start investigating whether PAs in EASIER can play
an analogous role of, respectively, architectural tactics in
[24]] and architectural patterns in [26], that are guiding the
search process with additional architectural knowledge. In
our case they are negative practices to be avoided, whereas
in the other two cases were positive practices to be adopted.
O

After the (custom) evaluation, non-dominated solutions
(i.e. solutions that are better than all others w.r.t. at least one
objective) are ranked according to the notion of crowding
distance [7]], and the best ones among them are then selected
and used as reproductive basis for the next iterations. In
particular, in each subsequent iteration, new sets of candidate
solutions are generated by randomly applying (custom)
crossover and mutation operators to the reproductive basis of
the previous step, with probabilities p(xover) and p(mut).

Concerning crossover, in EASIER a (custom) operator
is applied onto two parent Refactorings r; and 79
selected by tournament [32]]. The crossover point x is chosen
(uniformly at random) to be an integer value within the range
[1,len—1]. Then, two children are generated by single-point
crossover-based strategy as follows: the first = actions of 7
are combined with the second len — z actions of ro and
viceversa, as long as the z—th action of ry is compatible
with the (z + 1)-th action of 5. On the contrary, the child
is discarded and one of the parents replaces it.

Concerning mutation, in EASIER we defined a (custom)
operator that randomly choses a RefactoringAction

of the considered Refactoring and replaces
it with another compatible, randomly generated,
RefactoringAction.

After the application of crossover and mutation operators,
the obtained candidate solutions are in turn evaluated and
selected for the next iteration, as for the initial population.
The process proceeds for a number epo of iterations that
is given by evals/pop. After epo iterations, the available
solutions are once more compared each other and the set of



non-dominated ones, namely the Pareto frontier, is returned.

Finally, we remark that each generated architectural alter-
native undergoes a Performance Analysis process in order to
obtain performance indices of interest for the corresponding
architectural model. Such process strictly depends on the
target ADL, which may need some processing before and
after plugging a specific performance analyzer within EAS-
IER. In other words, a “bridge” between customNSGAIl and
the Performance Analyzer has to be provided that, in one
direction, calls a solver for the architectural model and, in
the other direction, properly fills back performance measures
into the model.

B. Emilia ADL context

On the right side of Fig. 2] we show how an ADL context
can be plugged into EASIER. In this description we make
specific reference to Amilia, that is the ADL we have chosen
for sake of this paper [8].

1) Data: In order to plug a new ADL in EASIER, ADL-
specific refactoring actions have to be provided by software
architects, as specializations of RefactoringAction,
which is defined as an EASIER entry point in the evo-
lutionary context. Hence, ADL-specific refactoring actions
inherit pre- and post-condition attributes that have to be
defined and implemented within the specific ADL context.
As mentioned in Sec[[lI-AT] we have developed an approach
that eases actions implementation because it grounds on an
ad-hoc metamodel and code generation facilities.

We envision the plugging mechanism to the
RefactoringAction entry point as  being
implemented conformingly to the pattern reported in
Fig. [} a specialization of RefactoringAction
is first created and then specialized as ADL-specific
refactoring actions. In the ZAmilia context, the
RefactoringAction specialization is represented
by the AEmiliaRefactoringAction concept. For
sake of this paper scope, we have developed an initial
pool of predefined refactoring actions for the AEmilia ADL
context, which is currently composed by two actions,
namely CloneAEl and ChangeRate.

CloneAEl is in charge of cloning a srcAEI Emilia AEI,
given as input, which is randomly selected from the Amilia
architectural specification. From an architectural point of
view, the straightforward semantics for CloneAEl is the
creation of a copy of srcAEI and the load balancing of
incoming requests between the original component and its
copy. In order to implement CloneAEl, a proper mod-
ification of port types of the source component and its
neighbors (i.e. the AEIs which srcAEI directly interacts
with) is needed. For example, while cloning a srcAEI, the
created clone has to be connected to srcAEI’s neighbors.
This implies that involved neighbors’ ports of type UNI
(i.e. port type with exactly one connection) have to become

OR type (i.e. port type with more than one connection).
Nevertheless, the port type modification does not implies
any change in the internal neighbors’ behavior. Hence,
the CloneAEl action is more complex than similar ones
introduced up today in literature (e.g. change of a component
multiplicity).

ChangeRate modifies a randomly selected rate of an
Zmilia action by multiplying its value by an uniformly
distributed FactorOfChange (FOC). ChangeRate intends
to represent the option of both enhancing and worsening
the performance of a certain action, so that customNSGAI |
is enabled to find an optimal balance between slower and
faster actions. Note that the ChangeRate semantics, in the
Amilia context, is twofold, because it can be charged either
to the software contribution of an action (i.e., modifying
the complexity of the action) or to the hardware one (e.g.,
replacing the engine that executes the action with another
one); however, this does not modify the semantics of the
architecture. The FactorOfChange attribute has been defined
as FOC [J0.5,2], FOC E 1, so that the ranges of new
actions can go up to double or down to halve the original
ones. However, this range can be modified without impact
on EASIER[]

It is worth to notice that such initial pool of actions does
not contain subtractive AEmi l iaRefactoringActions
as, e.g., the deletion of an AEIL. On the one hand, subtractive
actions would have enlarged the solution space whereas, on
the other hand, they would have introduced a high degree of
complexity in both managing the composition of refactoring
action sequences during the reproduction phases of the
customNSGAL I, and in applying the generated sequences.
For this reason, we have chosen to focus on non-subtractive
refactoring actions, thus leaving subtractive ones as a future
research direction.

We have associated ArchDist values to 1.3 and 1 for
CloneAEIl and ChangeRate, respectively. This is only
one possible setting of the distance to which refactoring
leads an alternative architecture from the initial one. Other
choices can be made, depending on the ADL and the
application context.

Finally, in order to generate architectural alternatives that
conform to the Emilia ADL grammar, we have added three
constraints onto a refactoring sequence, that are: (i) an AEI
cannot be cloned more than once in a sequence, otherwise
complex incompatibilities between ports occur; (ii) once
cloned an AEI in a sequence, none of its neighbour AEIs can
be cloned, due to the same reason as before; (iii) each rate
can be changed only once in a sequence, because we want
FOC to limit the range of a rate change in each sequence.

ADL-specific refactoring actions are collected into an
ADL-dependent Refactoring Actions Library, as shown in

IThe graphical effects of these two actions on an Emilia architecture
are visible by comparing Figg. f]and [f] in Sec. [[V}






each internal processing interaction is shown in the figure.
Unlabeled interactions are passive ones, hence they do not
have a rate. Practically, this means that only the labeled ones
can be modified by the ChangeRate refactoring action.

Figure 3: Amilia flow graph of the Fire Tracking System.

B. Experimentation

In this section, we first describe our experimental setup,
and then the obtained results are reported and analyzed.

1) Setup: Among the customizable parameters of
customNSGAL I, on the one hand, we focus on #epo, pop,
and #ewvals, since their tuning affects the distance of the
obtained solutions from the initial architecture. On the other
hand, we do not vary p(zover) and p(mut), as they are
essentially related to the behavior of customNSGAIl only. In
particular, we set p(zover) = 0.8 and p(mut) = 0.2 based
on their wide adoption in literature [37]], as well as a number
of our trial runs (in the order of one hundred). For sake of

this paper, we have chosen #epo [{5,10,20} and #pop [

{4,8,16,32}. As a result, we have obtained 12 different

configurations, with #evals 120,40, 80, 160, 320, 640}.
The len parameter represents the genome length. This

is an important degree of freedom of EASIER, in that

although long sequences of refactoring could lead to better
solutions in terms of performance, they could also lead to
architectural alternatives very distant from the initial one. We
have set len = 4 for sake of this paper experimentation, as
it has seemed (from trial runs) a good compromise between
execution time and quality of solutions. However, a larger
experimentation to study the effect of this parameter would
be very interesting, and it is part of our future work.

In order to evaluate Perf(Q and #P As objectives, a per-
formance analysis of each generated solutions is needed, and
this introduces a time overhead that increases as the com-
plexity of the architectural specification increases. Hence,
we have defined an upper bound on the execution time
of each run, called plausibility threshold, representing the
maximum time beyond which the execution time of a run is
considered non-plausible and is stopped. For FTS case study,
we have set a plausibility threshold of 12 hours, as driven
by trial runs. Only the executions with #evals = 640 have
violated this threshold, and therefore they do not appear in
our results.

We have also introduced a further configuration parameter,
that is the maximum number of CloneAEIl occurrences
into a genome sequence, namely maxCloning. It gives more
flexibility to our approach, because the cloning operation
obviously affects the time required for performance analysis.
In particular, we have observed that the time spent on
performance analysis over-linearly increases as the number
of AEI clones increases. Therefore, again based on trial runs,
in our scenario we have found suited to set maxzCloning =
3. Finally, threshold values for PAs detection have to be
tuned. In particular, we have set Thrateg = 3.486 and
T hthroughputue = 0.162, corresponding to average values
of rates and interactions throughputs, respectively.

2) Results: The results of our experimental evaluation
are shown in Table |I] where runs are ordered in #evals
ascending order. In details, Sol ID (Ist column) identifies
the configuration as #epo-pop: id, where id is assigned
by EASIER to the solution. All Pareto-optimal solutions
of each configuration are reported. In particular, for each
configuration we report the values of the fitness function
objectives (2nd, 3rd, and 4th columns). We also provide
details of the four refactoring actions associated to each
solution genome in the Pareto front (columns 5th to 16th). In
particular, each action in the sequence of a Pareto solution
is identified by its type (i.e. CloneAEI or ChangeRate),
its target element (i.e. the cloned AEI or the modified rate)
and the applied FOC (in case of ChangeRate).

3) Analysis: In what follows, we analyze the experimen-
tal results w.r.t. the following aspects: (i) execution times, (ii)
quality (i.e. fitness function values) of the Pareto solutions,
(iii) suggested sequences of refactoring.

Execution time: Our data have shown us that, on
average, a single run took 5297s while a single solution
required 27.53s of execution time. In particular, we have
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Figure 5: Comparison of Pareto frontiers across different runs.

hence we do not know its effectiveness on other case study,
even though the current results are promising. However, the
FTS architecture used here has been selected, for size and
quality, out of around 30 graduate student projects.

Refactoring actions: In this paper we have assumed
predefined, fixed, ArchDist for refactoring actions. This is
an aspect that needs more investigation, by providing some
guidelines to set these values in different ADL contexts and,
possibly, in different application domains. Moreover, in the
current Amilia Refactoring Actions Library, only additive
actions are considered. This may represent a limitation in
the refactoring possibilities. However, designing and imple-
menting delete actions is a complex task, due to the fact
that they heavily impact on the feasibility of a refactoring
in terms of pre and post conditions.

Pareto solutions: A multiobjective optimization process
has two main goals: 1) convergence to the Pareto-optimal set,
and 2) diversity in the considered intermediate solutions [/7]].
Our results suggest that diversity is maintained within the
ZAmilia context and that the longer customNSGAIl runs
(i.e. #evals increases), the more the performance quality of
Pareto solutions increases. However, a deeper investigation
of these two aspects will be needed to assess the robustness
of our approach.

PA detection: Thresholds calibration is a crucial task for
PAs detection. Adopting a simplistic strategy (i.e. based on

average values), like we did in this paper, however, does
not jeopardize EASIER validity, since adding complexity
to thresholds calibration would just result in more inclu-
sive/exclusive detection policies. However, EASIER current
implementation does not calculate thresholds for architec-
tural alternatives before counting the PAs occurrencing on
the latter one, as it always applies the original thresholds
for PA detection. This might affect the precision of the
detection procedure, and it is very likely the motivation
for the fluctuation in the values of #PAs across Pareto
solutions. Therefore, threshold (re-)calibration is certainly
an issue to be investigated in future.

V. CONCLUSION

In this paper we have presented EASIER, an evolutionary
approach for architecture refactoring based on performance
aspects. The first experimental results of our approach are
promising in terms of its applicability in practice. Beyond
the directions that could mitigate the threats to validity
introduced in Section [[V-C| we also intend to pursue the
following objectives in the future: (i) Experimentation while
scaling over the architecture size and across different values
of its main parameters, with a particular emphasis on the
genome length; (ii) Implementation of more performance
antipatterns detection rules and an automated mechanism
that supports such implementation process; (iii) Validation
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of the approach over different ADL contexts; (iv) Extension
of the fitness function to metrics related, for example, to
budget aspects (e.g. refactoring cost), as well as to other
non-functional properties (e.g. reliability).
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