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Abstract—The study introduces an innovative framework for
enhancing solar flare image prediction through deep learning
- autoencoding, addressing limitations of traditional machine
learning models. Solar flares impact space weather and Earth’s
technology, requiring improved prediction models. The research
integrates an auto-encoder and advanced techniques like binary
thresholding, Hessian matrix eigenvalue calculation, and Canny
edge detection for feature extraction and shape analysis. Mo-
tivated by societal and economic impacts, it aims to mitigate
disruptions caused by solar flares. Recent incidents underscore
the urgency for reliable predictive methods. The study combines
image processing and machine learning, utilizing an Autoencoder
with convolutional and transpose convolutional layers, contribut-
ing to feature representation and understanding in solar flare
analysis.

Index Terms—solar flare, autoencoding, binary thresholding,
hessian matrix, canny edge detection

I. INTRODUCTION

The study aims to develop an advanced framework for
predicting solar flare images using deep learning techniques,
enhancing our understanding of solar activity and its potential
impacts on space weather. Solar flares, sudden and intense
bursts of energy on the Sun’s surface, have significant im-
plications for space weather and technological systems on
Earth. Traditional methods of predicting solar flares rely on
manual analysis of observational data, leading to limitations
in accuracy and timeliness. As we move towards a technology-
dependent society, the need for more precise and efficient
prediction models becomes imperative. Literature supports
the urgency of improving solar flare prediction methods. For
instance, the work of [1] highlights the challenges posed by
solar flares to satellite communication systems, underscoring
the need for enhanced predictive capabilities. Additionally,
the study by [2] emphasizes the potential impact of solar
flares on power grids, demonstrating the critical importance of
accurate prediction for mitigating these effects. The absence of

comprehensive deep learning models for solar flare prediction
is evident in the literature. [3] discuss the limitations of current
methodologies and advocate for exploring advanced machine
learning techniques, while recent works such as [4] acknowl-
edge the potential of deep learning in space weather research
but have yet to delve into its application specifically for solar
flare prediction. Despite the growing importance of solar flare
prediction, a notable research gap exists in the application
of deep learning techniques to enhance the accuracy and
speed of predictions. Existing models often rely on traditional
machine learning algorithms and deep learning architectures.
This research seeks to address this gap by introducing a novel
approach that harnesses the power of auto-encoder employing
advanced techniques like binary thresholding, Hessian matrix
eigenvalue calculation, and Canny edge detection to enhances
feature extraction and shape analysis for solar flare image
predictions. The relevance of applying deep learning to so-
lar flare prediction is supported by recent advancements in
related fields. For instance, the success of deep learning in
image recognition [5] and time-series analysis [6] suggests its
potential applicability to the unique challenges posed by solar
flare image data. The motivation behind this research lies in
the potential societal and economic impact of improved solar
flare predictions. As highlighted by [7], space weather events,
including solar flares, can disrupt communication systems,
affect satellite operations, and even pose risks to power grids.
By developing a more accurate and timely prediction model,
our research aims to contribute to the resilience of critical
infrastructures and advance our ability to mitigate the effects
of solar flares on Earth. The urgency of our research is under-
scored by recent incidents such as the solar storm of February
2023, which caused disruptions to satellite communication and
navigation systems [8]. These events emphasize the critical
need for innovative and reliable methods in predicting solar
flares, forming the foundation of our study.



II. RELATED STUDIES

In ”Forecasting air quality time series using deep learning”
the study employs recurrent neural network (RNN) with long
short-term memory (LSTM) networks, a type of recurrent
neural network (RNN), to analyze temporal dependencies
in air quality. LSTMs are well-suited for capturing long-
term patterns in time-series data. The research achieves high
prediction accuracy by leveraging the ability of RNN and
LSTM networks to retain information over extended periods.
This results in a more nuanced understanding of the complex
temporal dynamics associated with time series data. The
conclusion emphasizes the potential of RNN and LSTM-based
models in improving the reliability of time series predictions,
particularly in capturing intricate temporal relationships [9].

Also, a study conducted by [10] used Long Short-Term
Memory (LSTM), AutoRegressive Integrated Moving Aver-
age (ARIMA), Seasonal AutoRegressive Integrated Moving
Average (SARIMA), and a hybrid model combining LSTM
and ARIMA. These methods were employed for time series
forecasting of the maximum sunspot number for Solar Cy-
cles 25 and 26. The authors emphasized the optimization of
hyperparameters using Bayesian optimization and highlights
the outstanding performance of the LSTM-ARIMA hybrid
model in achieving the best forecasting results. In their conclu-
sion, hybrid methods, particularly the LSTM-ARIMA model,
show promise in enhancing the accuracy of sunspot number
forecasting, and LSTM networks exhibit superior learning
capabilities compared to ARIMA in the context of time-
series data. The forecasted sunspot numbers align closely with
NASA’s predictions, suggesting the reliability of the chosen
forecasting approach.

In addition, [11] employed fourier transform long short-
term memory (FT-LSTM) model - a hybrid deep learning
(DL) model - developed for improving the prediction accu-
racy of monthly discharge time series in the Brahmani river
basin at Jenapur station. Additionally, three other popular
DL models are mentioned for comparison: LSTM, recurrent
neural network, and gated recurrent unit. The study evaluates
the performance of these models considering different lag
periods (1, 3, 6, and 12) to capture temporal relationships
and identify patterns within hydrological data. The results
indicate that the FT-LSTM model consistently outperforms
the other models across all lag periods in terms of error
metrics, demonstrating higher Nash–Sutcliffe efficiency and
R2 values. The conclusion emphasizes the effectiveness of the
FT-LSTM model in improving the accuracy of monthly runoff
forecasts, contributing to the field of hybrid DL models for
hydrological forecasting, and offering a promising solution for
water resource management and river basin decision-making
processes.

Moreover, Long Short-Term Memory (LSTM) model is
employed for constructing a water quality parameter prediction
model. The methodology involves utilizing the comprehensive
pollution index method and Mann-Kendall trend analysis for
assessing pollution status and change trends, extracting prin-

cipal water quality parameters based on pollution share rates,
employing the Spearman method for identifying influential
factors, and finally, constructing the water quality parameter
prediction model using LSTM analysis based on the driving
factor analysis outcomes. The LSTM model demonstrated
good prediction performance, with the average coefficient of
determination (R2) reaching 0.82 for total nitrogen (TN) and
0.86 for dissolved oxygen (DO). Comparative analysis showed
that the LSTM model outperforms both the random forest
(RF) model in time series prediction and exhibits superior
robustness and applicability compared to the AutoRegressive
Moving Average with eXogenous inputs model (ARMAX).
The findings suggest that the developed LSTM model offers
valuable technical assistance for water quality prediction and
early warning systems, particularly in economically disadvan-
taged regions with limited monitoring capabilities, facilitating
resource optimization and promoting sustainable development
[12].

In a comparison between Support Vector Machine (SVM),
representing a traditional machine learning method, and deep
learning for image recognition, with a focus on handwritten
digital images recognition, deep learning is highlighted for
its ability to naturally handle two-dimensional image data,
automatically extract features, and its popularity for good
learning ability and low generalization error. The results of
the comparison demonstrate that the deep learning method is
more accurate and more stable in image recognition compared
to SVM [13].

The continuous progress of time and technological de-
velopment has led to the explosive growth of image data
on network social media. Images, being a primary mode of
communication, are widely utilized due to their rich con-
tent and intuitive advantages. Convolutional Neural Network
(CNN) emerges as the primary machine learning method in
image recognition, involving operations like image eigenvalue
extraction and convolution to analyze diverse images. The
role of machine learning becomes increasingly significant in
the realm of artificial intelligence, with algorithms learning
from data to predict outcomes. However, challenges arise
in associating low-level image information with high-level
semantics. To address this, the paragraph introduces a multi-
level information fusion model based on the VGG16 model,
enhancing the recognition rate by recovering discarded feature
information lost during convolution. The model’s recognition
rate is validated using the 0RL Face Database, BioID Face
Database, and CASIA Face Image Database, emphasizing the
importance of CNN in image recognition improvements [14].

III. METHODOLOGIES

The strategy adopted for constructing the models was cen-
tered on forecasting images of solar flares. The initial step
involved assembling satellite images containing both solar
flares and those without them from Kaggle. Afterward, the
process begins with reading images from specified paths,
converting them to the RGB color space, and applying bi-
nary thresholding. Feature extraction is performed using the



Hessian matrix and eigenvalues, contributing to shape anal-
ysis and local structure understanding. Binary thresholding
is again applied to RGB images, followed by Canny edge
detection. The blue channel of the original image is combined
with the Canny edge-detected image, and bounding rectangles
are drawn around contours. The images are preprocessed,
normalized, and organized into lists for training and testing.
The study employs an Autoencoder neural network, involving
an encoder with convolutional layers and a decoder with
transpose convolutional layers. The Autoencoder is trained
over 55 epochs, utilizing Mean Squared Error (MSE) as a
metric. The trained Autoencoder is then applied to predict the
reconstructed images of the first 20 samples in the dataset.
This methodology aims to enhance the model’s understanding
of features in the data, specifically in the context of image
reconstruction.

Fig. 1. Model Architecture

A. Dataset

In this study, we employed the Solar Flare Prediction
Dataset sourced from Kaggle, which features satellite images
depicting both instances of solar flares and images of the sun
without flares. The decision to utilize satellite imagery was
influenced by its extensive coverage and precise temporal res-
olution, characteristics inherent to satellites[15]. Forecasting
solar flares is a daunting task, often likened to the challenges
encountered in weather prediction. In the realm of Machine
Learning, this dataset presents a notably intricate challenge
due to the intricacy of individual samples, comprising up to 40
images, the relatively limited sample size of 8,000 for training,
and the additional complexity posed by it being a regression
problem.

B. Data Preprocessing

The initial step involved in preparing the Solar Flare Predic-
tion Dataset for deep learning involved data preprocessing to
align it with the requirements of the deep learning algorithm.
This was crucial to empower the algorithm in identifying and
extracting patterns within the dataset, ultimately enhancing its
performance [16][17].

Specifically, the satellite images underwent resizing to di-
mensions of 180 by 180 pixels with 3 channels (RGB). The
pixel values in the satellite dataset, originally ranging from 0 to
255, were then normalized by dividing each value by 255. This

normalization process aimed to facilitate the backpropagation
process, accelerating training for quicker convergence and
improved overall performance [18][19][20].

C. Mathematical and Computational Tools for Feature Extrac-
tion and Analysis

The hessian matrix and hessian matrix eigvals in image
processing serves several purposes, including feature extrac-
tion, shape analysis, and object detection. They are particularly
useful when dealing with images containing complex struc-
tures, edges, or regions of interest, and they contribute to the
extraction of meaningful information for subsequent analysis
or decision-making. Also, they are used for the following
purposes.

• Blob Detection: The Hessian matrix is effective in detect-
ing blobs or regions with varying intensities in an image.
By analyzing the eigenvalues of the Hessian matrix,
you can identify regions that correspond to blob-like
structures. This is particularly useful in applications such
as medical imaging (detecting tumors) or computer vision
(detecting objects) [21].

• Corner Detection: Eigenvalues of the Hessian matrix
are used to identify corners or junctions in an image.
High eigenvalues indicate regions with strong curvatures,
typically found at corners. Corner detection is crucial in
computer vision tasks like image registration or object
recognition [22].

• Shape Analysis: The Hessian matrix provides information
about the local curvature and structure of objects in an
image. Analyzing the eigenvalues helps in understanding
the shape of objects, whether they are edges, corners, or
blobs. This is valuable in tasks like shape recognition and
classification [23].

• Edge and Ridge Detection: By examining the eigenvalues,
the Hessian matrix can be used to detect edges and ridges
in an image. Different eigenvalue combinations indicate
different types of structures. This is essential in image
segmentation and edge detection tasks [24].

• Image Filtering: Hessian matrix-based methods can be
employed as filters to enhance certain features in an
image. For example, filtering based on eigenvalues might
emphasize specific structures or suppress noise [25].

• Scale Selection: The Hessian matrix is used for multi-
scale analysis, allowing the detection of structures at
different scales. This is crucial for identifying objects or
patterns of varying sizes in an image [26].

• Object Recognition: The information derived from the
Hessian matrix and eigenvalues can be used as features
for object recognition tasks. This is common in computer
vision applications where understanding the structure of
objects is essential [27].

D. Hessian matrix

In image processing, the Hessian matrix is a mathematical
concept used to analyze the second-order spatial derivatives of



an image. It provides information about the local structure, cur-
vature, and shape of objects in an image. The Hessian matrix
is commonly employed for feature extraction, edge detection,
and shape analysis. The Hessian matrix for a grayscale image
I(x,y) is a 2x2 matrix of partial derivatives computed with
respect to the spatial coordinates x and y. The Hessian matrix
H is defined as follows:

Hess, H =

[
∂2I
∂x2

∂2I
∂x∂y

∂2I
∂x∂y

∂2I
∂y2

]
(1)

Each element of the matrix represents the second-order
partial derivative of the intensity values in the image. The
elements H11 and H22 represent the curvature along the x-
axis and y-axis, respectively, while H12 and H21 represent the
cross-derivative terms. In practice, the Hessian matrix is often
computed using convolution operations with appropriate con-
volution kernels to approximate the second-order derivatives.
This allows for efficient and numerical stable computation of
the Hessian matrix for various image processing tasks.

E. Hessian Matrix Eigvals

In image processing, hessian matrix eigvals refers to the
function or operation that calculates the eigenvalues of the
Hessian matrix. The Hessian matrix is a 2x2 matrix of
second-order partial derivatives, often used to analyze the
local structure, curvature, and shape of objects in an image.
The eigenvalues of the Hessian matrix are crucial in various
image processing applications, providing information about
the principal curvatures and the nature of he local image
structures. The eigenvalues (λ1 and λ2) and corresponding
eigenvectors of the Hessian matrix are computed using the
hessian matrix eigvals operation. Mathematically, given the
Hessian matrix:

H =

[
Hxx Hxy

Hxy Hyy

]
(2)

where Hxx, Hxy, Hyy are the second-order partial derivatives
of the image intensity values, the eigenvalues (λ1 and λ2) are
obtained by solving the characteristic equation:

det(H − λI) = 0 (3)

where I is the identity matrix. The eigenvalues represent
the principal curvatures of the image surface at a particular
point. Their magnitudes and signs provide insights into the
local structure of the image: If both eigenvalues are positive,
the region corresponds to a bright spot or a ridge. If both
eigenvalues are negative, the region corresponds to a dark spot
or a trough. If one eigenvalue is positive and the other is
negative, the region corresponds to a saddle point.

F. Model Training and Evaluation

The images are read from the specified path and are then
converted from the BGR color space to the RGB color
space using OpenCV. Binary thresholding is then applied
to the converted RGB image. Pixels with intensity values

Fig. 2. Image, the max and min eigenvalues of the Hessian matrix

greater than or equal to 200 become 255 (white), and pixels
below 200 become 0 (black). The resulting binary image
is stored for later use. Again, the original images are read
and converted to grayscale using cv2.cvtColor. Next, the
Hessian matrix and eigenvalues of the grayscale images were
calculated using the hessian matrix and hessian matrix eigvals
functions respectively from the scikit-image library. The sigma
parameter defines the standard deviation of the Gaussian filter
applied before computing the derivatives. The order parameter
specifies the derivatives to be computed. These functions
were performed for feature extraction, shape analysis, and
understanding local structures in the image. The resulting
eigenvalues were used for further analysis and visualization.
Likewise, the original images are converted from the BGR
color space to the RGB color space using cv2.cvtColor and
binary thresholding is applied to the RGB image . Pixels with
intensity values greater than or equal to 200 become 255
(white), and pixels below 200 become 0 (black). Canny edge
detection algorithm was then applied to the binary thresholded
image and the parameters 10 and 100 represent the lower
and upper thresholds for the edge detection. Furthermore, blue
channel (img[:,:,0]) was selected from the original RGB image
and performs a weighted combination of the blue channel
of the original image and the Canny edge-detected image.
The parameters 0.8 and 0.4 represent the weights assigned
to the original and Canny images, respectively. Contours were
found in the Canny edge-detected image and were iterated
through. For each contour it found bounding rectangle was
drawn using cv2.boundingRect. Moreover, the code processes
the set of images, resizes them, normalizes pixel values, and
then collects the preprocessed images along with their start
and end annotations into separate lists to be used for training
and testing. The MinMaxScaler scales the input data to a
specified range, often [0, 1]. Encoder and decoder components
of an Autoencoder neural networks were defined using the
Sequential API in Keras/TensorFlow. The encoder sequentially
adds convolutional layers with batch normalization and ReLU
activation functions. The encoder consists of four convo-
lutional layers with increasing numbers of filters (32, 64,
128, 256). Each convolutional layer is followed by batch
normalization to stabilize training and a Rectified Linear Unit
(ReLU) activation function. Likewise, the decoder sequentially
adds transpose convolutional layers (deconvolutional layers)
with ReLU activation functions. The decoder consists of four



transpose convolutional layers with decreasing numbers of
filters (128, 64, 32). The last layer has a number of filters
equal to output class and uses ReLU activation.

• Autoencoder Composition and Compilation: The autoen-
coder combines the previously defined encoder and de-
coder as sequential layers in a new Autoencoder model.
The encoder and decoder are connected sequentially,
forming the complete autoencoder architecture and com-
piles the autoencoder model.
Compile loss: Specifies the loss function to be minimized
during training.
Compile optimizer: Specifies the optimization algorithm
to be used during training.
Metrics=[”mse”]: Specifies that Mean Squared Error
(MSE) to be used as a metric to evaluate the performance
of the model during training.

• Autoencoder Training: This stage trained the autoencoder
model by fitting it to a dataset of original images and
their corresponding masked versions. The training pro-
cess occurs over 55 epochs, and the Checkpoint model
callback is employed to save the model weights when
improvements in validation accuracy occur. The trained
autoencoder model is stored in a variable, allowing for
subsequent analysis and evaluation. This process aims to
teach the autoencoder to reconstruct masked images from
their original counterparts, facilitating the generation of
predictions and potentially enhancing the model’s ability
to represent and understand features in the data. After
training over 55 epochs, the loss and mse reduced from
7.2959 and 134541.8906 to 0.6363 and 0.0088 respec-
tively.

• Prediction: The trained autoencoder was applied to the
first 20 images in the dataset and stores the reconstructed
images (predictions). The autoencoder attempts to recon-
struct each input image, and predictions will contain the
model’s predictions for these specific samples.
Put three figures here...

Fig. 3. A side-by-side visualization of an image, its binary threshold and the
image with edges and bounding rectangles overlaid

G. Discussion

The catastrophic and devastating impact of solar flares on
living organisms lives, and radio communication demands
urgent attention. The machine learning process for detecting
these solar flares involves various image processing and feature

extraction steps. Initially, the images are converted to RGB
color space, and binary thresholding is applied. Grayscale con-
version, Hessian matrix, and eigenvalue calculations are per-
formed for feature extraction. Binary thresholding, Canny edge
detection, and weighted combination with the blue channel are
applied for further image analysis. Contours are found, and
bounding rectangles are drawn around them. The code then
preprocesses images for training an Autoencoder, involving
resizing, normalization, and collection of annotations.

The autoencoder architecture is defined with encoder and
decoder components using convolutional layers, batch normal-
ization, and ReLU activation. The model is compiled with
specified loss and optimization functions, and Mean Squared
Error (MSE) is chosen as a metric. Training occurs over
55 epochs, with a checkpoint mechanism for saving weights
during improved accuracy. The loss and MSE metrics reduce
significantly during training.

Finally, the trained autoencoder is used for prediction on the
first 20 images, generating reconstructed images. The overall
process aims to enhance the model’s ability to reconstruct
masked images from their originals, potentially improving
feature representation and understanding in the data.

H. Conclusion

The machine learning process for detecting solar flares
in images involves multiple steps for image preprocessing,
feature extraction, and training an autoencoder model. Images
are initially processed by converting them to the RGB color
space, applying binary thresholding, and calculating Hessian
matrix eigenvalues for feature extraction and shape analy-
sis. Canny edge detection is then applied, and a weighted
combination of the original and edge-detected images is
performed. Contours and bounding rectangles are found for
visual analysis. The dataset is further processed for training,
including resizing, normalization, and annotation collection.
An autoencoder model is defined, composed, and compiled
with specified loss, optimizer, and evaluation metrics. The
model is then trained over 55 epochs, with callbacks for
monitoring and saving. The process results in reduced loss and
mean squared error (mse). The trained autoencoder is applied
to predict reconstructed images for the first 20 samples in the
dataset. Overall, the workflow encompasses image processing,
feature extraction, model training, and prediction.
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