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To my mother

Abstract. Let Ψ(n) = n ·
∏

q|n

(
1 + 1

q

)
denote the Dedekind Ψ function

where q | n means the prime q divides n. Define, for n ≥ 3; the ratio

R(n) = Ψ(n)
n·log logn

where log is the natural logarithm. Let Mx =
∏

q≤x q

be the product extending over all prime numbers q that are less than
or equal to x ≥ 2. The Riemann hypothesis is a conjecture that the
Riemann zeta function has its zeros only at the negative even integers
and complex numbers with real part 1

2
. It is considered by many to

be the most important unsolved problem in pure mathematics. There
are several statements equivalent to the Riemann hypothesis. We state
that if the Riemann hypothesis is false, then there exist infinitely many
natural numbers x such that the inequality R(Mx) <

eγ

ζ(2)
holds, where

γ ≈ 0.57721 is the Euler-Mascheroni constant and ζ(x) is the Riemann
zeta function. In this note, using our criterion, we prove that the Rie-
mann hypothesis is true.
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1. Introduction

The Riemann hypothesis was proposed by Bernhard Riemann (1859). The
Riemann hypothesis belongs to the Hilbert’s eighth problem on Hilbert’s list
of twenty-three unsolved problems. This is one of the Clay Mathematics Insti-
tute’s Millennium Prize Problems. In mathematics, the Chebyshev function
θ(x) is given by

θ(x) =
∑
q≤x

log q

with the sum extending over all prime numbers q that are less than or equal
to x, where log is the natural logarithm.
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Proposition 1.1. For every x > 1 [9, Theorem 4 (3.15) pp. 70]:

θ(x) <

(
1 +

1

2 · log x

)
· x.

The following property is based on natural logarithms:

Proposition 1.2. For x > −1 [6, pp. 1]:

log(1 + x) ≤ x.

Leonhard Euler studied the following value of the Riemann zeta function
(1734) [1].

Proposition 1.3. We define [1, (1) pp. 1070]:

ζ(2) =

∞∏
k=1

q2k
q2k − 1

=
π2

6
,

where qk is the kth prime number. By definition, we have

ζ(2) =

∞∑
n=1

1

n2
,

where n denotes a natural number. Leonhard Euler proved in his solution to
the Basel problem that

∞∑
n=1

1

n2
=

∞∏
k=1

q2k
q2k − 1

=
π2

6
,

where π ≈ 3.14159 is a well-known constant linked to several areas in math-
ematics such as number theory, geometry, etc.

The number γ ≈ 0.57721 is the Euler-Mascheroni constant which is
defined as

γ = lim
n→∞

(
− log n+

n∑
k=1

1

k

)

=

∫ ∞

1

(
− 1

x
+

1

⌊x⌋

)
dx.

Here, ⌊. . .⌋ represents the floor function. Franz Mertens discovered some
important results about the constants B and H (1874) [7]. The number
B ≈ 0.26149 is the Meissel-Mertens constant where γ = B +H [7].

Proposition 1.4. We have [3, Lemma 2.1 (1) pp. 359]:
∞∑
k=1

(
log

(
qk

qk − 1

)
− 1

qk

)
= γ −B = H.

For x ≥ 2, the function u(x) is defined as follows [8, pp. 379]:

u(x) =
∑
q>x

(
log

(
q

q − 1

)
− 1

q

)
.

On the sum of the reciprocals of all prime numbers not exceeding x, we have:
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Proposition 1.5. For x > 1 [9, Theorem 5 (3.17) pp. 70]:

− 1

2 · log2 x
<
∑
q≤x

1

q
−B − log log x.

Definition 1.6. We define a function about the partial sum of the reciprocals
of primes:

T (x) =
∑
q≤x

1

q
−B − log log θ(x).

In number theory, Ψ(n) = n ·
∏

q|n

(
1 + 1

q

)
is called the Dedekind Ψ

function where q | n means the prime q divides n. For x ≥ 2, a natural
number Mx is defined as

Mx =
∏
q≤x

q.

We defineR(n) = Ψ(n)
n·log logn for n ≥ 3. We say that Dedekind(x) holds provided

that

R(Mx) ≥
eγ

ζ(2)
.

Definition 1.7. We define a new constant:

J =
(log(ζ(2))−H)

(γ − log(ζ(2)))
.

The well-known asymptotic notation Ω was introduced by Godfrey Harold
Hardy and John Edensor Littlewood [4]. In 1916, they also introduced the
two symbols ΩR and ΩL defined as [5]:

f(x) = ΩR(g(x)) as x → ∞ if lim sup
x→∞

f(x)

g(x)
> 0;

f(x) = ΩL(g(x)) as x → ∞ if lim inf
x→∞

f(x)

g(x)
< 0.

After that, many mathematicians started using these notations in their works.
From the last century, these notations ΩR and ΩL changed as Ω+ and Ω−,
respectively. There is another notation: f(x) = Ω±(g(x)) (meaning that
f(x) = Ω+(g(x)) and f(x) = Ω−(g(x)) are both satisfied). Nowadays, the
notation f(x) = Ω+(g(x)) has survived and it is still used in analytic number
theory as [11]:

f(x) = Ω+(g(x)) if ∃k > 0∀x0 ∃x > x0 : f(x) ≥ k · g(x)

which has the same meaning to the Hardy and Littlewood older notation.
Putting all together yields a proof for the Riemann hypothesis.
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2. Central Lemma

Several analogues of the Riemann hypothesis have already been proved. Many
authors expect (or at least hope) that it is true. However, there are some
implications in case of the Riemann hypothesis could be false. The following
is a key Lemma.

Lemma 2.1. If the Riemann hypothesis is false, then there exist infinitely
many natural numbers x for which Dedekind(x) fails (i.e. Dedekind(x) does
not hold).

Proof. The function g is defined as [10, Theorem 4.2 pp. 5]:

g(x) =
eγ

ζ(2)
· log θ(x) ·

∏
q≤x

(
1 +

1

q

)−1

.

The Riemann hypothesis is false whenever there exists some natural number
x0 ≥ 5 such that g(x0) > 1 or equivalent log g(x0) > 0 [10, Theorem 4.2 pp. 5].
It was proven the following bound [10, Theorem 4.2 pp. 5]:

log g(x) ≥ log f(x)− 2

x
.

For x ≥ 2, the function f was introduced by Nicolas in his seminal paper
as [8, Theorem 3 pp. 376], [2, (5.5) pp. 111]:

f(x) = eγ · log θ(x) ·
∏
q≤x

(
1− 1

q

)
.

If the Riemann hypothesis is false then there exists a real number b with
0 < b < 1

2 such that, as x → ∞ [8, Theorem 3 (c) pp. 376], [2, Theo-
rem 5.29 pp. 131],

log f(x) = Ω±(x
−b).

Actually Nicolas proved that log f(x) = Ω±(x
−b), but we only need to use the

notation Ω+ in this proof under the domain of natural numbers. According
to the Hardy and Littlewood definition, this would mean that

∃k > 0,∀y0 ∈ N,∃y ∈ N (y > y0) : log f(y) ≥ k · y−b.

The previous inequality is also log f(y) ≥
(
k · y−b · √y

)
· 1√

y , but we notice

that
lim
y→∞

(
k · y−b · √y

)
= ∞

for every possible values of k > 0 and 0 < b < 1
2 . Now, this implies that

∀y0 ∈ N,∃y ∈ N (y > y0) : log f(y) ≥ 1
√
y
.

Note that, the variable k disappears in our previous expression because of we
do not need it anymore. In this way, if the Riemann hypothesis is false, then
there exist infinitely many natural numbers x such that log f(x) ≥ 1√

x
. Since

1√
x0

> 2
x0

for x0 ≥ 5, then it would be infinitely many natural numbers x0

such that log g(x0) > 0. □
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3. Essential Sums

These are essential sums.

Lemma 3.1.

∑
q≤x

(
1

q
− log

(
1 +

1

q

))
= log

∏
q≤x

q2

q2 − 1

−H + u(x).

Proof. We obtain that

log

∏
q≤x

q2

q2 − 1

−H + u(x)

=
∑
q≤x

log

(
q2

(q2 − 1)

)
−H + u(x)

=
∑
q≤x

(
log

(
q2

(q − 1) · (q + 1)

))
−H + u(x)

=
∑
q≤x

(
log

(
q

q − 1

)
+ log

(
q

q + 1

))
−H + u(x)

=
∑
q≤x

(
log

(
q

q − 1

)
− log

(
q + 1

q

))
−H + u(x)

=
∑
q≤x

(
log

(
q

q − 1

)
− log

(
1 +

1

q

))
−
∑
q≤x

(
log

(
q

q − 1

)
− 1

q

)

=
∑
q≤x

(
log

(
q

q − 1

)
− log

(
1 +

1

q

)
− log

(
q

q − 1

)
+

1

q

)

=
∑
q≤x

(
1

q
− log

(
1 +

1

q

))
by Propositions 1.3 and 1.4. □

Lemma 3.2.
∞∑
k=1

(
1

qk
− log

(
1 +

1

qk

))
= log(ζ(2))−H.

Proof. This is a consequence of applying the Lemma 3.1 when x tends to
infinity by Propositions 1.3 and 1.4. □

Lemma 3.3.∑
q>x

(
1

q
− log

(
1 +

1

q

))
= log

(∏
q>x

q2

q2 − 1

)
− u(x).



6 Frank Vega

Proof. By Lemmas 3.1 and 3.2, we have∑
q>x

(
1

q
− log

(
1 +

1

q

))
=

∞∑
k=1

(
1

qk
− log

(
1 +

1

qk

))
−
∑
q≤x

(
1

q
− log

(
1 +

1

q

))

= log(ζ(2))−H − log

∏
q≤x

q2

q2 − 1

+H − u(x)

= log

(∏
q>x

q2

q2 − 1

)
− u(x).

□

4. Main Insight

This is the main insight.

Lemma 4.1. The inequality
∏

q≤x e
1
q

log θ(x) ≥
(

eγ

ζ(2)

)1+J

holds for large enough x ∈
N.
Proof. By Proposition 1.4, the inequality∏

q≤x e
1
q

log θ(x)
≥
(

eγ

ζ(2)

)1+J

is the same as∑
q≤x

(
1

q

)
−B − log log θ(x) ≥ H + J · γ − (1 + J) · log(ζ(2))

after of applying the logarithm to the both sides and distributing the terms.
In addition, we can see that

log log θ(x) < log log

((
1 +

1

2 · log x

)
· x
)

= log

(
log

(
1 +

1

2 · log x

)
+ log x

)

= log

(log x) ·

1 +
log
(
1 + 1

2·log x

)
log x


= log log x+ log

1 +
log
(
1 + 1

2·log x

)
log x


≤ log log x+

log
(
1 + 1

2·log x

)
log x

≤ log log x+
1

2 · log2 x
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by Propositions 1.1 and 1.2. So, we would have∑
q≤x

(
1

q

)
−B − log log x− 1

2 · log2 x
≥ H + J · γ − (1 + J) · log(ζ(2)).

That is,∑
q≤x

(
1

q

)
−B−log log x− 1

2 · log2 x
−u(x) ≥ H−u(x)+J ·γ−(1+J)·log(ζ(2)).

after subtracting u(x) to the both sides of the inequality. By Proposition 1.5,
we can check that

− 1

2 · log2 x
− 1

2 · log2 x
− u(x) ≥ H − u(x) + J · γ − (1 + J) · log(ζ(2)).

By Lemma 3.1, we obtain that∑
q≤x

(
1

q
− log

(
1 +

1

q

))
− 1

log2 x
−u(x) ≥ J ·(γ − log(ζ(2)))−log

(∏
q>x

q2

q2 − 1

)
.

By Definition 1.7 and Lemma 3.2, we deduce that the previous inequality
holds for large enough x ∈ N due to

lim
x→∞

∑
q≤x

(
1

q
− log

(
1 +

1

q

))
− 1

log2 x
− u(x)

 = log(ζ(2))−H. □

5. Primary Lemma

The following is a primary Lemma.

Lemma 5.1. If T (x) ≥ 0 holds for x ∈ N then Dedekind(x) also holds.

Proof. If Dedekind(x) holds for x ∈ N, then

R(Mx) ≥
eγ

ζ(2)
.

That is the same as

elog(ζ(2))−H ·
∏
q≤x

(
1 +

1

q

)
≥ eB · log θ(x)

by Proposition 1.4. By Lemmas 3.1, 3.2 and 3.3, we deduce that

e
log

(∏
q>x

q2

q2−1

)
−u(x) ·

∏
q≤x

e
1
q ≥ eB · log θ(x).

By Definition 1.6, that is equivalent to

T (x) ≥

(
u(x)− log

(∏
q>x

q2

q2 − 1

))
.
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after applying the logarithm to the both sides and distributing the terms. By
Proposition 1.2 and Lemma 3.3, we deduce that

u(x)− log

(∏
q>x

q2

q2 − 1

)
≤ 0.

To sum up, we can assure that Dedekind(x) holds whenever T (x) ≥ 0 holds
for x ∈ N.

□

6. Main Theorem

This is the main theorem.

Theorem 6.1. Dedekind(x) always holds for large enough x ∈ N.

Proof. By Lemma 4.1, the inequality∏
q≤x e

1
q

log θ(x)
≥
(

eγ

ζ(2)

)1+J

holds for large enough x ∈ N. That would be∏
q≤x e

1
q

eB · log θ(x)
= eT (x) ≥ 1

eB
·
(

eγ

ζ(2)

)1+J

Hence, it is enough to show that

1

eB
·
(

eγ

ζ(2)

)1+J

≥ 1

holds to confirm that Dedekind(x) also holds by Lemma 5.1. By Definition
1.7, we would have

1

eB
·
(

eγ

ζ(2)

)J

·
(

eγ

ζ(2)

)
≥ 1

which is

1

eB
· elog(ζ(2))−H ·

(
eγ

ζ(2)

)
≥ 1

since x
1

log x = e for x > 0. By Proposition 1.4, that would be

elog(ζ(2))−γ ·
(

eγ

ζ(2)

)
=

(
ζ(2)

eγ

)
·
(

eγ

ζ(2)

)
= 1 ≥ 1

and therefore, the proof is done. □
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7. Main Result

This is the main result.

Corollary 7.1. The Riemann hypothesis is true.

Proof. By Lemma 2.1, if the Riemann hypothesis is false, then there exists
an infinite sequence of natural numbers xi such that Dedekind(xi) fails. This
contradicts the fact that Dedekind(x) always holds for large enough x ∈ N
according to the Theorem 6.1. By Reductio ad absurdum, the Riemann hy-
pothesis must be true as a direct consequence of Lemma 2.1 and Theorem
6.1. □

8. Conclusions

Practical uses of the Riemann hypothesis include many propositions that are
considered to be true under the assumption of the Riemann hypothesis and
some of them that can be shown to be equivalent to the Riemann hypothesis.
Indeed, the Riemann hypothesis is closely related to various mathematical
topics such as the distribution of primes, the growth of arithmetic functions,
the Lindelöf hypothesis, the Large Prime Gap Conjecture, etc. A proof of the
Riemann hypothesis could spur considerable advances in many mathematical
areas, such as number theory and pure mathematics in general.
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