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Abstract. The crop seed grading method based on deep learning has
achieved ideal recognition results. However, an effective deep neural net-
work model for seed grading usually needs a relatively high computa-
tional complexity, memory space, or inference time, which critically ham-
pers the utilization of complex CNNs on devices with limited computa-
tional resources. For this reason, a method of combining layer pruning
and filter pruning is proposed to realize fast and high-purity seed grading.
First, we propose an effective approach based on feature representation
to eliminate redundant convolutional layers, which greatly reduces the
model’s consumption of device storage resources. Then, the filter-level
pruning based on the Taylor expansion criterion is introduced to fur-
ther eliminate the redundant information existing in the convolutional
layer. Finally, an effective and practical knowledge distillation technology
(MEAL V2) is adopted to transfer knowledge of well-performing mod-
els, to compensate for the information loss caused by the pruning of the
network. Experiments on red kidney bean datasets demonstrate that the
method is effective and feasible. We proposed the Vgg Beannet, which
can achieve 4Ö inference acceleration while the accuracy is only reduced
by 0.13% when the filter is pruned by 90%. Moreover, we also com-
pared some handcrafted lightweight architectures such as MobileNetv2,
MixNet, etc. The results show that the pruned network outperforms the
above network in inference time (2.07ms vs. 7.83ms, 22.23 ms) and ac-
curacy (96.33% vs. 95.94%, 94.89%).

Keywords: Seed grading · Deep learning · Neural network pruning ·

Knowledge distillation.

1 Introduction

In the processing industry, the purity of seeds is an important evaluation crite-
rion of quality rating. The seed grading can improve the seed quality, save the
sowing quantity and cereals, advantageous to achieving sowing mechanization
and precision sowing, and it can bring significant social benefits. Traditional



seed defect detection methods generally rely on manual detection, which is in-
efficient and subjective. Therefore, an objective and automated seed grading
method is required.

To solve this problem, researchers have applied machine vision technology
to detect seed quality [1–3]. Features, such as histogram of oriented gradient
(HOG), color , texture, Gabor etc, can be extracted from images of seeds, and
then, the various effective classifiers are employed to identify the defects of the
seed, such as support vector machine (SVM), decision tree (DT) etc. How-
ever, because of the diversity and fine-grained recognition of defective seeds,
these methods based on manual feature extraction are difficult to distinguish
fine-grained difference, resulting in low classification accuracy and lack of self-
adaptivity.

Recently, some researchers also adopted deep learning technology in crop
identification tasks and achieved good performance [4–6]. The deep network
model represented by a convolutional neural network (CNN) significantly im-
proves the accuracy of traditional detection and recognition problem by auto-
matically learning a hierarchical feature representation from raw data. Heo et
al. [4] used CNN to filter weed seeds from high-quality seeds, Uzal et al. [5]
adopted CNN to estimate the number of soybean seeds. However, the accuracy
of the above crop classification methods based on deep learning depends on the
model depth. However, with the rise of network depth and width, the time com-
plexity and spatial complexity of the depth model will increase, which will suffer
from slow inference speed, especially the seed sorting system with high through-
put. Moreover, the massive researches indicate that the existing DNN models
have numerous parameter redundancy, which consumes massive computing and
storage resources.

Due to the limited computing resource platform such as FPGA, GPU, MCU,
etc. Deep model compression provides an effective solution for reducing the
model size and lowering the computation overheads, such as network structure
search (NAS) [7], weight quantization [8], knowledge distillation [9, 19], and net-
work pruning [11, 12]. NAS requires massive computing resources and brings a
set of new hyperparameter problems. Quantization reduces the bit-width of pa-
rameters, thus decreases memory footprint, but requires specialized hardware
instructions to achieve latency reduction [13]. Network pruning has the advan-
tages of simple operation, efficient implementation, can reduce network complex-
ity and solve over-fitting problems, and has shown broad prospects in various
emerging applications.

Neural network pruning can realize the pruning of weights, filters, and con-
volutional layers. The fine-grained pruning at the weight level is flexible, but
it needs specialized software or hardware to achieve the practical effect. The
coarse-grained pruning based on the filter not only owns high flexibility but also
does not need the corresponding cooperation of software and hardware, however,
it has certain limitations in reducing latency. The pruning model obtained by
layer pruning owns less runtime memory usage and inference time because fewer



layers mean fewer data moving in memory, thereby improving computational
efficiency.

In this study, a mixed pruning strategy, which takes both layer pruning and
channel pruning into consideration, is proposed to achieve model compression
and improve the inference speed of the algorithm. First, we designed a set of
linear classifiers to explore the roles and dynamics of intermediate layers and
combined with feature visualization analysis to remove the redundant convolu-
tion layer. Then, we adopted the criterion based on Taylor expansion to approx-
imate the change in the loss function if removing the least important param-
eters and then directly prunes those corresponding to the almost flat gradient
of the loss function. Finally, a multi-teacher integrated knowledge distillation
technology [10] is introduced to transfer knowledge to the pruning network to
compensate for the accuracy loss caused by pruning. Overall, our contributions
are three-fold as follows:

1) We proposed a mixed pruning strategy based on feature representation
and Taylor expansion to achieve fast and high-purity seed grading.

2) A simple and effective multi-teacher integrated knowledge distillation
method (i.e., meal V2) is introduced to transfer the knowledge of CNN with
high accuracy to the pruned network to recover its predictive accuracy.

3) Experiments are conducted on our constructed red kidney bean datasets,
and the results show this method greatly improves the inference speed, memory
consumption, and computation cost with almost no loss of accuracy.

2 Proposed Method
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Fig. 1. The structure flow chart of the proposed method.

Automatic seed grading based on deep learning provides an effective solution
for improving seed quality. However, high computational complexity, memory
space and inference time of the deep learning model limit its deployment on
resource-constrained edge devices. We proposed a mixed pruning strategy based
on feature representation and Taylor expansion to achieve fast and high-purity



seed grading, as shown in Fig. 1. In the stage of layer pruning, we designed a
set of linear classifiers for feature diagnosis and combined feature visualization
technology to remove redundant convolutional layers. In the filter pruning stage,
a highly efficient method based on the Taylor expansion criterion is employed,
which adopts the first derivative as the criterion to measure the importance of fil-
ters and eliminate redundant filters. Finally, multi-teacher integrated knowledge
distillation technology is utilized to transfer knowledge to the pruning network to
compensate for the accuracy loss caused by pruning. And the proposed method
is specifically described as follows.

2.1 Network Structure and Feature Diagnosis

A.Network structure. Vggnet [14] is a very deep convolutional network and
has good generalization ability to a wide range of complex pattern recognition
tasks. Moreover, compared with some complex networks, it has the advantages of
simple structure, fast inference speed, and easy deployment, so it is still heavily
used for real-world applications in both academia and industry. In this paper, an
improved VggBN-16 [15] network is selected as the feature extraction network,
its structure is shown in Fig. 2.
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Fig. 2. The structure flow chart of the proposed method.

B.Feature diagnosis. CNN (including VggBN-16) containing both feature
extractor and classifier, learns reasonable feature representations specific to the
current task with corresponding training data. While the features from the last
convolutional layer of a CNN tend to provide the best discriminative power,



features from intermediate layers also contain important information related to
the tasks and can be utilized to analyze the behaviors of the corresponding CNN.
At the same time, with the increase of network depth, the computational cost
of this method will increase dramatically and the test accuracy will be affected.
Therefore, we trained a set of linear classifiers on features extracted at different
layers within the network and visualized the outputs to explore the roles and
dynamics of intermediate layers, then determined the optimal number of network
layers.

As shown in Fig. 2, since each layer has a different output feature shape, we
adopted adaptive average pool to simplify the method and unified the embedding
length so that each layer can produce roughly the same output size, the pooling
is done as follows:

di = round
(√

N
ni

)
(1)

Ei = AdaptiveAvgPool (Mi, di) (2)

where N is the embedding length, i (1 ≤ i ≤ L) is the convolution layer index, ni
is the number of filters in the i-th convolutional layer, Mi is layer i’s (1 ≤ i ≤ L)
output map. AdaptiveAvgpool reduces Mi to embedding Ei ∈ Rn×d×d. Then,
the output Ei of each layer is flattened to zi as the input of the fully connected
network. Finally, we train a set of linear classifiers Fi(zi) to predict the correct
class y using only the specific intermediate result:

zi = flatten (Ei) (3)

yi = Fi (zi) = softmax (wizi + bi) (4)

where wi and bi respectively represent the weight and bias of the i-th linear
classifier. During training, we will freeze the parameters of the original network
model, finetune the auxiliary classifier through backpropagation, and finally de-
termine the feature extraction ability of the convolutional layer.

Combining the feature visualization technology, we found that the shallow
network has good feature extraction capabilities. Through the experimental re-
sults, the layer with less contribution in the deep model is eliminated, and the
compression of the convolutional layer of the model is realized, which speeds up
the reasoning of the model.

2.2 Taylor Expansion Criterion-Based Channel Pruning

Through feature visualization, we also found that some feature maps are similar
to each other, which proves that the neural network structure still has some re-
dundant information, so we can prune the convolution network model to remove
redundant information, thus enhancing the inference speed. And the Tayler ex-
pansion based network pruning methods [15] have been widely used to condense
the structure of the CNN and then make a balance between the generalization
and compact network because it does not lack basic theoretical guidance or
bring a new set of hyperparameter problems. It regards channel pruning as an



optimization problem, i.e., minimizing the difference between the cost functions
before and after pruning.

Raw data were processed to generate training samples
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where wli(i = 1, 2, · · · , L) is the weight parameter, Cl is the number of channels.
L(D | W) represents the cost function, which is the optimization objective of
this study. In the process of channel pruning, a subsetW ′ is refined from original
parameters W by using the following combinatorial optimization:

min
W′
|L (D | W ′)− L(D | W)| s.t. ‖W ′‖0 ≤ B (5)

the norm l0 in ‖W ′‖0 limits the number of nonzero parameters B. If L (D | W ′) ≈
L(D | W), it is easy to reach the global minimum of Eq.(5). After pruning a
specific parameter, the change in the loss function is approximated by

|∆L (hi)| = |L (D, hi = 0)− L (D, hi)| (6)

where L (D, hi = 0) is the cost after pruning, L (D, hi) is the cost without prun-
ing, hi is the eigenvalue of parameter i output. Using a first-order Taylor poly-
nomial L (D, hi = 0) is approximated by [15]

L (D, hi = 0) = L (D, hi)−
δL
δhi

hi +R1 (hi = 0) (7)

Where R1 (hi = 0) is expressed as:

R1 (hi = 0) =
δ2L

δ (h2i = ξ)

h2i
2

(8)

where ξ is a value in the range of 0 and hi. If the influence caused by removing
the high-order term can be ignored, substituting Eq.(7) into Eq.(6).

θTE (hi) = |∆L (hi)| =
∣∣∣∣L (D, hi)−

δL
δhi

hi − L (D, hi)
∣∣∣∣ =

∣∣∣∣ δLδhihi
∣∣∣∣ (9)

Based on this definition, the parameters having an almost flat gradient of
the cost should be pruned, and then θTE is computed for a feature map by [15].

2.3 Knowledge Distillation of Multi-model Ensemble

After the mixed pruning of channel and layer, we have obtained networks with
a more compact architecture. However, in the process of network pruning, some
useful information may be lost, which leads to the performance degradation of
the model. To compensate for the performance loss, we introduced a simple and
effective knowledge distillation technology (Meal v2) to transfer knowledge from



the original model and some CNNs with high accuracy to the pruned model for
boosting its performance.

The method adopted the similarity loss and discriminator only on the final
outputs and used the average of SoftMax probabilities from all teacher ensembles
as the stronger supervision for distillation [10]. The realization process is shown
in Fig. 3, which mainly consists of three parts: teacher ensemble, KL divergence
loss, and the discriminator.
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Fig. 3. The realization process of knowledge distillation based on Meal v2 [10].

A.Teachers ensemble. We chosen some models that perform well in the
seed dataset as the teacher network and adopted the average of softmax proba-
bilities of these pre-trained teachers as an ensemble. Assuming Tθ as a teacher
network,the output ensemble probability p̂Tθe can be described as:

p̂Tθe (X) =
1

k

k∑
t=1

pTθt (X) (10)

where pTθt represents the t-th teacher’s softmax prediction. X is the input image
and k is the number of total teachers [10].

B. KL divergence. It is used to measure the similarity of two probability
distributions. We trained the student network Sθ by minimizing between its
output p̂Sθe (xi) and the ensembled soft labels p̂Tθe (xi) generated by the teacher
ensemble. In practice, we can simply minimize the equivalent cross-entropy loss
as follows [10]:

LCE (Sθ) = − 1

n

n∑
i=1

pTθt (xi) logpSθ (xi) (11)

where n is the number of samples.
D. Discriminator.The discriminator is a binary classifier, which is used to

determine whether the input features come from the teacher set or the student
network. It consists of a sigmoid function following the binary cross-entropy
loss [10]. The loss can be formulated as:

LD = − 1

N

N∑
i=1

[
yi · log p̂Di + (1− yi) · log

(
1− p̂Di

)]
(12)



pD(x; θ) = σ (fθ ({xT , xS})) (13)

where yi ∈ {0, 1} is the binary label for the input features xi, and p̂Di is the
corresponding probability vector. pD(x; θ) is a sigmoid function is used to model
the individual teacher or student probability. fθ is a three-FC-layer subnetwork
and θ is its parameter, σ(∗) is the logistic function. The final loss function is:

LLOSS = LD + LCE (14)

Finally, the loss is minimized by backpropagation.

3 Experiments

In this section, we demonstrate our experiments as follows. Part 1 introduces
the dataset used in the experiments. Part 2 indicates training details and the
performance metrics we used such as Acc, Flops, F1 scores, interference time,
and parameters. At last, Part 3 presents the experimental results and discussions.

3.1 Red Kidney Bean Dataset

In the training stage, as the deep convolutional network described, a large
amount of data is required. However, there is currently no suitable seed database,
so the seed images used in our method were acquired by the sorting machine in
the actual seed harvest process using a highspeed camera in a real environment.
According to the requirements for the quality grading of red kidney beans by
enterprises, the sample images of red kidney beans were divided into four cat-
egories: plump beans (1661), peeled beans(509), dried beans(1173), and broken
beans(488), which were randomly assigned to the training set, verification set
and test set at a ratio of 3:1:1, typical images are shown in Fig. 4.

(a) (b) (c) (d)

Fig. 4. Red kidney bean dataset. (a) plump beans (b) peeled beans (c) dried beans (d)
broken beans.



3.2 Training Details and Evaluation Metric

All experiments were performed on a 64-bit Linux-based operation system, Ubuntu
18.04. The software is mainly based on the deep learning architecture of Pytorch
and python development environment Spyder. The hardware is based on an
NVIDIA 1080 TI GPU, with CUDA10.1 accelerating calculation.

The size of the input image is 224Ö224, and use small batch stochastic gra-
dient descent (SGD) to train the network, the initial learning rate is 0.001, the
Batch size is 16, the epoch is 100. In the number of steps at 1/2 and 3/4, the
learning rate is adjusted to 1/10 of the original, the momentum parameter is set
to 0.9, and the weight decay parameter is set to 0.0001. Besides, every iteration,
each of the input batch-size images through some transformations, such as Flip
horizontally or vertically etc.

The number of parameters and required Float Points Operations (denoted as
FLOPs) are employed to evaluate the model size and computational requirement,
which are widely used protocols. To evaluate the seed grading task performance,
we also provide the accuracy, F1 score models, and inference time on Quadro
m5000 GPU for an image.

Table 1. Performance of some popular CNN in red kidney bean test set.

Model Params(M) FLOPs Time(ms) Acc(%) F1 score(%)

Alexnet [16] 57.02 711.46M 2.31 88.60 88.22
Resnet50 [17] 23.52 4.12G 10.44 95.54 95.54

DenseNet121 [18] 6.96 2.88G 22.71 95.67 95.67
Googlenet [19] 5.60 1.51G 10.89 96.85 96.87

VggBN-16 14.82 15.41G 9.53 96.59 96.58

3.3 Experimental Results and Analysis

Selection of pruning model. In this study, we first compared the perfor-
mance of some popular CNNs in the red kidney bean test set. It mainly includes
VggBN-16, Alexnet [16], ResNet50 [17], DenseNet121 [18], and GoogleNet [19].
Experimental results of Table 1 show that VggBN-16 and GoogleNet can achieve
higher accuracy (96.59%, 96.85%) and f1-score (96.69% and 96.87%). In addi-
tion, although VggBN-16 has more parameters and computation, it has a faster
inference speed than other networks (excluding Alexnet). The main reasons for
this problem are as follows: 1) The complicated multi-branch designs make the
model difficult to implement and customize, slow down the inference and reduce
the memory utilization. 2) Some components (e.g., depthwise Conv in Xception
and MobileNets and channel shuffle in ShuffleNets) increase the memory access
cost and lack supports of various devices. Therefore, we will further compress
the VggBN-16 to make it easy to be deployed on edge devices to achieve fast
and high-purity seed grading.



Feature map visualization and feature diagnosis. CNN is an end-to-end
architecture. The recognition result can be automatically obtained by feeding
only the pictures to be recognized to the network. The intermediate process is
usually a black box and not interpretable. We used visualization technology to
extract the output feature maps of each layer in the network. To facilitate obser-
vation, we selected seeds with obvious damage. We showed the output feature
map of the active layer from layer 3 to layer 13 in Fig. 5. It could be seen that the
layer retained the original image color, shape, and texture feature information.
In addition, we can observe that the features extracted by the network become
more abstract as the depth of the layer increases.

Fig. 5. The visualization results of the feature map in a pseudocolor image.

Meantime, we trained a set of linear classifiers on features extracted at dif-
ferent layers within the network to explore the roles and dynamics of interme-
diate layers, then determine the optimal number of network layers. As shown in
Fig. 6, The recognition accuracy of CNN is gradually improved with the increase
of network depth, and after the tenth layer, its performance is not significantly
improved. Combined with the above analysis results of feature visualization, we
think that the shape, texture, and color feature information extracted from the
first ten layers of the network can achieve better results, and if the network is too
deep, the computational cost of the network will increase dramatically and the
test accuracy will be affected. Therefore, we try to change the VggBN-16 net-



work structure to further optimize the performance of seed sorting. Ultimately,
we only keep the convolution structure of the first ten layers of VggBN-16 and
name it Vgg BeanNet. The F1 score after finetuning is 96.47%, as shown in
Table 2.

Fig. 6. Visualization of feature diagnosis.

Table 2. Performance comparison between VggBN-16, Vgg BeanNet and network after
pruning

Model(Filter pruning ratio) Params(M) FLOPs Time(ms) Acc(%) F1 score(%)

VggBN-16(Baseline) 14.82 15.39G 9.53 96.59 96.58
Vgg BeanNet 7.74 14.02G 8.43 96.47 96.47(_0.11)

Vgg BeanNet(66.67%) 0.81 1.98G 2.25 96.99 97.00(^0.42)
Vgg BeanNet(90.48%) 0.07 210.92M 2.07 95.93 95.97(_0.61)

Channel pruning and knowledge distillation. From the visualization re-
sults of the output feature map of each convolutional layer of the VggBN-16
model, it can be found that there are many similar feature maps, which indi-
cates that there is still redundant information of the parameters stored in the
high-dimensional tensors, so we use the channel pruning method based on Tay-
lor to further compress the Vgg BeanNet. The relationship between pruning rate
and model precision is shown in Fig. 7. The results show that the model still
has good performance when the pruning rate is less than 70%. Sometimes the
performance of the pruning model (66.67% filter pruning) is even higher than
that of the original model, which may be due to overfitting caused by too many
parameters, and network pruning is essentially a problem of searching the opti-
mal network structure. When the pruning rate is more than 70%, the accuracy



of the Vgg BeanNet is significantly reduced, but the compression effect of the
model is better. Specifically, we also report the test results of filter pruning rate
of 66.67% and 90.48% in Table 2.

Fig. 7. The effect of pruning varying percentages of channels.

Meantime, we adopt knowledge distillation technology to improve the recog-
nition accuracy of the Vgg BeanNet(90.48%). From the above experimental re-
sults, we can see that GoogleNet and Vgg Beannet (66.67%) have achieved good
recognition accuracy of 96.85%, and 96.99% respectively. Therefore, we construct
a multi-teacher model to guide students to learn the feature information of the
teacher model and narrow the gap between them. Table 3 compares the per-
formance improvement of the Mealv2 method and KD [9] on the Vgg BeanNet
(90.48%) and Alexnet networks. From the experimental results, we can find that
both methods are significantly improved and Mealv2 obtains better results.

Table 3. Accuracy comparison before and after knowledge distillation experiment

Model(Filter pruning ratio) Time(ms) Scrach Fitune KD [9] Mealv2

Vgg BeanNet(90.48%) 2.07 95.67 95.97 96.07 96.33
Alexnet 2.31 88.60 — 93.05 94.62

Performance comparison of lightweight network In addition, we also
compared with typical handcrafted lightweight networks (Mobilenetv2 [20], Shf-
fleNetv2 [21], GhostNet [22], and Mixnet [23]). As shown in Table 4, in the case
of similar computational complexity, the pruned network also gets the best clas-
sification accuracy (96.33%) and inference speed (2.07ms), this also shows that
the proposed method does not rely too much on expert experience and is highly
efficient under actual deployment conditions.



Table 4. Performance comparison before and after knowledge distillation experiment

Model(Filter pruning ratio) Params(M) FLOPs Time(ms) Acc(%) F1 score(%)

Mobilenetv2 [20] 2.23 318.96M 7.83 95.94 95.93
ShuffleNetv2 [21] 1.26 149.58M 10.01 94.10 94.07

GhostNet [22] 3.91 149.4M 15.56 94.36 94.28
MixNet [23] 3.48 357.63M 22.23 94.89 94.88

Vgg BeanNet(90.48%) 0.07 210.92M 2.07 96.33 96.33

4 Conclusions

To solve the problem of a large number of parameters and low efficiency of a
deep learning model for seed sorting, this paper propose a mixed pruning strategy
based on feature representation and Taylor expansion to achieve fast and high-
purity seed grading. Moreover, we introduce a simple and effective knowledge
distillation technology to transfer the knowledge of CNNs with high accuracy to
the pruned network to recover its predictive accuracy. The experimental results
verify the reliability of the scheme on red kidney bean data sets, which not
only ensures the accuracy of classification but also reduces the volume of the
network model. Meantime, experiments on Quadro m5000 GPU verify that the
compressed model has better performance and inference speed on mobile devices
than some cleverly designed lightweight CNN networks such as mobilenetv2 and
shufflenetv2, etc.
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