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Abstract—This paper addresses the joint detection and track-
ing of an unknown and time-varying number of targets in clutter.
Here we formulate the tracking task in a variable-dimension
state space, under which the reversible jump sequential Markov
chain Monte Carlo sampling methods can be utilised to online
estimate the target number, their kinematic states, and the
association variables. In particular, a fast Rao-Blackwellisation
scheme is devised to improve the tracking accuracy and sam-
pling efficiency for linear Gaussian models. Based on the non-
homogeneous Poisson process measurement model, the developed
tracker enjoys a partially parallel sampling structure, thereby
being able to efficiently tackle the data association under massive
measurements and clutter. The simulation results demonstrate
that the developed tracker exhibits superior tracking perfor-
mance in comparison to existing trackers in both accuracy and
computational efficiency when tracking multiple targets under
heavy clutter.

Index Terms—data association, target tracking, detection, Rao-
Blackwellisation, reversible jump sequential MCMC

I. INTRODUCTION

In practical tracking applications, targets may frequently
appear or disappear from the field of view due to the limited
view of the sensor, making existing trackers that assume a
fixed number of targets inapplicable in this case [1], [2]. One
traditional strategy to address track formation and termination
is to employ statistical test methods such as the sequential
probability ratio test (SPRT), in which a log-likelihood ratio
is calculated to assess the validity of the track [3]. Likewise,
the estimates of target rates are employed to perform statistical
tests to confirm the target appearance and disappearance in the
probabilistic multiple hypothesis tracker (PMHT) [4].

Another way to handle joint detection and tracking is with
random finite set (RFS) methods, which include the recently
popular probabilistic hypothesis density (PHD) [5] and the
Poisson multiple Bernoulli mixture (PMBM) filters [6]. In
contrast to hypothesis testing methods [3], [4] that have no
explicit target birth or death probabilistic model, RFS-based
approaches require assigning a specific target birth and death
prior in a Bayesian recursion, where the two most commonly
used birth priors are the Poisson and Multi-Bernoulli birth
models, combined with a target death process modelled by
survival probabilities. Nonetheless, RFS-based filters often
require approximations and heuristic designs in exchange for a
faster implementation; typical examples are the Gaussian Mix-
ture implementation of the PHD filter [7] and the PMBM filter

with heuristic pruning, gating, and hypothesis management to
limit the exponential increase in the global hypotheses [6].

Besides the RFS-based methods, a more straightforward
solution is to directly infer the joint posterior distribution
of the target number/existence and states under the Bayesian
inference framework. To model the target birth and death, the
notion of existence was introduced in [8], [9], which is a binary
vector to indicate the existence of each target at each time
step. Several implementations have been developed under the
existence vector representation, including Monte Carlo sam-
pling methods [10], [11] and graphical model approaches [12].
For instance, in [10], the birth and death of each target were
modelled by a Bernoulli process, under which a sequential
Markov chain Monte Carlo (SMCMC) sampling algorithm was
developed to detect and track multiple point targets. Specif-
ically, it avoided the data association problem by applying
a non-homogeneous Poisson process (NHPP) measurement
model so that the likelihood function can be evaluated in
closed form in the SMCMC implementation. Despite being
association-free, it could be inefficient since the sampling
structure cannot be parallelised as in [13]; in addition, it is
also inapplicable to a Rao-Blackwellisation scheme as in [1]
for linear Gaussian models. In [12], a Poisson birth process
is assumed based on the existence vector representation, and
target detection is performed by calculating the marginal
posterior existence probabilities and comparing them with a
threshold. An approximate particle-based implementation of
the sum-product algorithm (SPA) was developed for tracking
an unknown number of extended targets. However, using the
existence variable may be computationally inefficient due to
the need to specify a maximum target number that exceeds
the actual target number, meaning that part of the calculation
is ineffectual.

Alternatively, the evolution of the target number, the kine-
matic states, and the associations can be modelled by a
Markov switching state space model, also known as a jump
Markov system. In [14], a general particle filter framework
was outlined for point target tracking, while no details were
provided for design proposals. Another particle filter-based
method was devised in [15] for tracking an unknown number
of point targets, where it assumed a simpler and perhaps
more realistic birth/death model that restricted changes in the
number of targets to no more than one at a given time step.



In particular, it adopted a M-best 2-D assignment algorithm to
approximate the marginal likelihood required in each particle
weight calculation. The same target birth and death model was
used in [11], and a Rao-Blackwellisation particle filter was
devised for linear Gaussian models to improve the sampling ef-
ficiency. However, due to the degradation of particle filters on
high-dimensional problems, implementations based on particle
filters, e.g., [11], [15], would suffer from degraded tracking
accuracy, thus limiting their capability to track large numbers
of targets. For these variable dimension tasks, the reversible
jump MCMC (RJ-SMCMC) method was first presented by
Green in [16], and a more general framework was subse-
quently presented in [17], which is an advantageous alternative
to the particle filter in high-dimensional problems. In the
aspect of tracking applications, this reversible jump MCMC
approach has previously been utilised to jointly estimate the
number and state of targets in [18]; nevertheless, it does not
take into account the problem of data association that arises
when tracking multiple targets in clutter.

Therefore, this paper presents a fast Rao-Blackwellised RJ-
SMCMC (RB-RJ-SMCMC) sampler that can jointly estimate
the target number and target kinematic states under data asso-
ciation uncertainty and clutter for linear Gaussian models. The
developed fast Rao-Blackwellisation scheme is different from
standard Rao-Blackwellisation schemes that are implemented
by sampling from a reduced sampling space, e.g., [19], [20];
in contrast, it holds the same purpose as [1], which samples
from the original sampling space that includes the target states
to keep the parallel sampling features, while reconstructing the
estimates of the target state using the obtained samples of non-
linear states to enjoy the advantage of Rao-Blackwellisation.
Based on the previous work [1], here we consider the target
number uncertainty, and a RB-RJ-SMCMC sampler is devised
to handle the joint detection and tracking task. Specifically,
we employ a target birth and death model in which at most
one target can be added or removed by each time step, the
same as the birth model in [15]. Other birth and death models
can be easily incorporated into our framework due to the
flexibility of our sampling scheme. Compared to the standard
SMCMC approach in [10], our RB-RJ-SMCMC framework
does not require assigning a maximum number of targets and
sampling the whole vector of the target states. In addition,
we develop a more efficient Rao-Blackwellisation scheme and
tackle the data association problem by leveraging the scalable
association framework [1], which guarantees a partially par-
allel execution of the RB-RJ-SMCMC sampling scheme and
avoids the expensive summations in the likelihood function
in [10], thus making it advantageous in adverse conditions
with heavy clutter. In comparison to approximated methods
[6], [12], it can theoretically converge to the Bayesian optimal
filter when the sample size is large. We verify the effectiveness
of the proposed tracker in two simulation scenarios.

II. PROBLEM FORMULATION AND MODELLING

This paper considers tracking an unknown and time-varying
number of targets in clutter. Here we formulate the problem

in a Bayesian setting, where we seek to recursively estimate
the joint posterior of the target number, the target state, and
the association uncertainty. Specifically, we define a variable
dimension target state Xn = [Xn,1, Xn,2, ..., Xn,Kn

]T , in
which Kn denotes the number of objects. Given the sequence
of observations from time step 1 to n, Z1:n, the associa-
tions at time step n are denoted by θn = [θn,1, ..., θn,Mn ],
where Mn is the total measurement number. Each component
θn,j , j ∈ {1, ...,Mn} gives the origin of the measurement
Zn,j ; θn,j = 0 indicates that Zn,j is a clutter, and θn,j =
i, i ∈ {1, . . . ,Kn} means that Zn,j is generated from target
i. In the subsequent sections, we will present the state space
model, the transition densities and the association prior.

A. Dynamical model

Assume that targets move in a D-dimensional surveillance
area, and the target state for each object i in the d-th dimension
is Xd

n,i = [xd
n,i, ẋ

d
n,i]

T , which contains the target’s position
and velocity. We assume a linear Gaussian dynamical model
for the kinematic state Xd

n,i, represented as

Xd
n,i = F d

i X
d
n−1,i + wd

n,i (1)

where wd
n,i ∼ N (0, P d

i ). Accordingly, the transition density
at time step n is p(Xd

n,i|Xd
n−1,i) = N (F d

i X
d
n−1,i, P

d
i ). The

joint transition density for all dimensions can be computed as
p(Xn,i|Xn−1,i) =

∏D
d=1 p(X

d
n,i|Xd

n−1,i).
For a constant velocity (CV) model, its transition matrix

and noise covariance are

F d
i =

[
1 τ
0 1

]
, P d

i = Qi

[
τ3/3 τ2/2
τ2/2 τ

]
. (2)

where τ is the time interval between time steps.

B. Target Birth and Death Model

In this part, we describe the target birth and death under
a variable dimensional state space model. For simplicity, the
newly-born target state is always added to the end of the target
state vector of the previous time step. In addition, we define
a target death identifier In to indicate the target death event,
and In records the disappearing target index from the previous
target state Xn−1 whenever a target death happens, where In ∈
{0, 1, ...,Kn−1} and In = 0 denotes that no target dies.

We model the evolution as the first-order Markov chain and
the joint transition density p(Xn,Kn, In|Xn−1,Kn−1, In−1)
can be factored as:

p(Xn,Kn, In|Xn−1,Kn−1, In−1) = p(Kn|Kn−1) (3)
× p(In|Kn,Kn−1)p(Xn|Xn−1,Kn,Kn−1, In)

where p(Kn|Kn−1) is the transition density of the target
cardinality that implicitly models the birth, death and sur-
vival events of the targets, and p(In|Kn,Kn−1) is the prior
distribution of the target death identifier which gives the
probability of choosing an index In from the existing tar-
get indices to delete when a target death event happens.
p(Xn|Xn−1,Kn,Kn−1, In) defines the motion model under
the target birth, death and survival events.



For the consideration of practicality, the dimension change
at time step n is limited to a single move to the adjacent
dimension from the dimension of the last time step n − 1,
and this simplified assumption is widely adopted in literature,
e.g., [15], [21]. To be specific, we assume that at each time
step, only one of the three events can happen, i.e., one new
target appearing, one existing target disappearing, and all
targets surviving. Under such an assumption, at most one target
can appear or disappear at a given time step. Therefore, the
transition density p(Kn|Kn−1) is defined as:

p(Kn|Kn−1) =


Pb Kn = Kn−1 + 1;
1− Pb − Pd Kn = Kn−1;
Pd Kn = Kn−1 − 1;
0 otherwise

(4)

where Pb and Pd denote the probability of a target appearing
and disappearing, respectively.

The transition of the target death identifier p(In|Kn,Kn−1)
is time independent of the previous In−1. A simple choice is a
discrete uniform distribution with its probability mass function
being 1

Kn−1
and the support being {1, ...,Kn−1} when target

death happens; otherwise In = 0 with probability one which
indicates no target death at time step n:

p(In|Kn,Kn−1)

=

{
1

Kn−1

∑Kn−1

iD=1 [In = iD] Kn = Kn−1 − 1;

[In = 0] otherwise
(5)

where [In = iD] is 1 if In = iD, and 0 otherwise. Alterna-
tively, a non-uniform prior can be designed to assign a larger
possibility of deleting one or several targets by monitoring,
e.g., the covariance of the estimates.

The transition density p(Xn|Xn−1,Kn,Kn−1, In) is de-
fined based on different events:

p(Xn|Xn−1,Kn,Kn−1, In)

=


pb(Xn|Xn−1,Kn) Kn = Kn−1 + 1;
ps(Xn|Xn−1,Kn) Kn = Kn−1;
pd(Xn|Xn−1,Kn, In) Kn = Kn−1 − 1;
0 otherwise

(6)

Here we assume that targets move independently such that the
transition density can be further partitioned into each target’s
transition density as follows:

• Target birth event: When the target birth event happens
with a probability of Pb at time step n, the target number
Kn = Kn−1 + 1, and In = 0. The transition density can
be partitioned into surviving targets and new-born targets.
Under the assumption that the birth and survival events
are mutually independent, we have

pb(Xn|Xn−1,Kn) = p1(Xn,Kn
)

Kn−1∏
i=1

p(Xn,i|Xn−1,i)

(7)
where Xn,Kn

denotes the newborn target, stacked in the
Kn-th of Xn with the first Xn,1:Kn−1 being the surviving

targets. The transition density p(Xn,i|Xn−1,i) for each
surviving target is defined by the motion model, and
p1(Xn,Kn) is the state prior distribution specified accord-
ing to various tracking scenarios. In this paper, we assume
a Gaussian distribution prior p1(Xn,Kn

) = N (µb, Cb),
where µb and Cb are defined such that the Gaussian
distribution can cover the interested area, e.g., the target
birth zone or the whole surveillance region.

• Target survival event: Under this event, the dimension
is invariant to the last time step n − 1. Therefore, the
target transition density can be directly deduced by:

ps(Xn|Xn−1,Kn) =

Kn∏
i=1

p(Xn,i|Xn−1,i) (8)

• Target death event: The target death process involves
terminating a target according to In. Hence, the transition
density under the target death event is

pd(Xn|Xn−1,Kn, In) (9)

=

In−1∏
i=1

p(Xn,i|Xn−1,i)

Kn∏
i∗=In

p(Xn,i∗ |Xn−1,i∗+1)

C. Association prior and measurement model

Here, we adopt the NHPP measurement model presented
in [1]. Denote the set of Poisson rates by Λ = {Λi; i =
0, 1, ...,Kn}, where Λ0 is the clutter rate, and Λi is the i-
th target rate, i = 1, ...,Kn. We assume the measurement
process of each target i is an NHPP with a Poisson distributed
measurement number with rate Λi. The clutter process is a
homogeneous Poisson process (HPP) with Poisson rate Λ0.
The total measurement process is the superposition of the con-
ditional independent NHPP/HPP measurement processes from
Kn targets and the clutter, and the total measurement number
follows a Poisson distribution with rate Λs =

∑Kn

i=0 Λi.
Under the assumption of the NHPP measurement model, the
measurements are conditionally independent when conditional
on the measurement number Mn and target state Xn,

p(Zn|Xn,Mn) =

Mn∏
j=1

p(Zn,j |Xn), (10)

The Mn measurements {Zn,j}Mn
j=1 along with associations

{θn,j}Mn
j=1 are also conditionally independent:

p(Zn|Xn, θn,Mn) =

Mn∏
j=1

p(Zn,j |Xn,θn,j
) (11)

Here we assume the target originated measurement follows a
linear and Gaussian model while the clutter measurement is
uniformly distributed in the observation area of volume V :

p(Zn,j |Xn,i) =

{
N (HXn,i, Ri), i ̸= 0; (object)
1
V , i = 0; (clutter)

(12)

where H is the observation matrix. Ri indicates the noise co-
variance or the Gaussian target extent. Non-uniformed clutter
and non-Gaussian models can be readily included if required.



The joint prior p(θn|Kn,Mn) can be calculated from the
product of Mn independent association priors:

p(θn|Kn,Mn) =

Mn∏
j=1

p(θn,j |Kn) (13)

where the prior for each association p(θn,j |Kn) is a categorical
distribution with support θn,j ∈ {0, ..,Kn}

p(θn,j |Kn) =

Kn∏
i=0

(
Λi

Λs

)[θn,j=i]

. (14)

The conditional distribution p(θn,j |Zn,j , Xn) is also a cat-
egorical distribution as follows:

p(θn,j |Zn,j , Xn) =
(Λ0

V l̃

)[θn,j=0]
Kn∏
i=1

(Λilij

l̃

)[θn,j=i]

, (15)

where lij = N (Zn,j ;HXn,i, Ri) under the linear Gaussian
measurement model, and l̃ is a normalisation constant to
ensure the sum of all categories’ probabilities equals one. Note
that since Kn is the cardinality of Xn, that is, Kn = |Xn|,
the condition on Kn is omitted whenever it is conditional on
Xn, and the same applies to Mn, where Mn = |Zn|.

III. RAO-BLACKWELLISED REVERSIBLE JUMP
SEQUENTIAL MCMC SAMPLER

This section presents a Rao-Blackwellised reversible jump
SMCMC (RB-RJ-SMCMC) sampler for linear Gaussian mod-
els where only nonlinear or non-Gaussian states are sampled
by the RJ-SMCMC. We adopt a Monte Carlo approximation
of the posterior distribution p(θ1:n,K1:n, I1:n|Z1:n), which, at
each time step n, is approximated by a set of Np unweighted
samples {θ(p)1:n,K

(p)
1:n, I

(p)
1:n}

Np

p=1. According to the marginal-
conditional decomposition, we have

p(Xn, θ1:n,K1:n, I1:n|Z1:n) (16)
= p(θ1:n,K1:n, I1:n|Z1:n)p(Xn|θ1:n,K1:n, I1:n, Z1:n)

Subsequently, the marginal posterior of target state Xn can
be calculated as a Gaussian mixture by using the empirical
distribution of p(θ1:n,K1:n, I1:n|Z1:n):

p(Xn|Z1:n) ≈
1

Np

Np∑
p=1

p(Xn|θ(p)1:n,K
(p)
1:n, I

(p)
1:n, Z1:n), (17)

where each p(Xn|θ(p)1:n,K
(p)
1:n, I

(p)
1:n, Z1:n) is a Gaussian that can

be updated by Kalman filtering. In the following, we presented
the detailed derivations. First, we have

p(Xn|θ(p)1:n,K
(p)
1:n, I

(p)
1:n, Z1:n) (18)

∝ p(Zn|Xn, θ
(p)
n ,Mn)p(Xn|K(p)

1:n, I
(p)
1:n, θ

(p)
1:n−1, Z1:n−1)

The predicted density p(Xn|K(p)
1:n, I

(p)
1:n, θ

(p)
1:n−1, Z1:n−1) is in

the form of a Gaussian distribution, when assuming a Gaussian
initial prior distribution and transition densities in (6)

p(Xn|K(p)
1:n, I

(p)
1:n, θ

(p)
1:n−1, Z1:n−1) (19)

=

∫
p(Xn, Xn−1|K(p)

1:n, I
(p)
1:n, θ

(p)
1:n−1, Z1:n−1)dXn−1

=

∫
p(Xn|Xn−1,K

(p)
n ,K

(p)
n−1, I

(p)
n )

× p(Xn−1|θ(p)1:n−1,K
(p)
1:n−1, I

(p)
1:n−1, Z1:n−1)dXn−1

=

K(p)
n∏

i=1

N (Xn,i;µ
(p)
n|n−1,i,Σ

(p)
n|n−1,i)

=



N (X
n,K

(p)
n

;µb, Pb) K
(p)
n = K

(p)
n−1 + 1;

×
∏K

(p)
n−1

i=1 N (Xn,i;µ
(p)
n|n−1,i,Σ

(p)
n|n−1,i)∏K(p)

n
i=1 N (Xn,i;µ

(p)
n|n−1,i,Σ

(p)
n|n−1,i) K

(p)
n = K

(p)
n−1;∏I(p)

n −1
i=1 N (Xn,i;µ

(p)
n|n−1,i,Σ

(p)
n|n−1,i) K

(p)
n = K

(p)
n−1 − 1;

×
∏K(p)

n

i∗=I
(p)
n

N (Xn,i∗ ;µ
(p)
n|n−1,i∗+1,Σ

(p)
n|n−1,i∗+1)

where

µ
(p)
n|n−1,i = Fiµ

(p)
n−1|n−1,i (20)

Σ
(p)
n|n−1,i = FiΣ

(p)
n−1|n−1,iF

⊤
i + Pi. (21)

Subsequently, the marginal posterior in (18) has a form of:

p(Xn|θ(p)1:n,K
(p)
1:n, I

(p)
1:n, Z1:n)

∝
K(p)

n∏
i=1

N (Z̃i
n;HXn,i, R̃i)N (Xn,i;µ

(p)
n|n−1,i,Σ

(p)
n|n−1,i)

∝
K(p)

n∏
i=1

N (Xn,i;µ
(p)
n|n,i,Σ

(p)
n|n,i) (22)

where Z̃i
n and R̃i are computed as follows, with Θi

n = {j|j ∈
{1, ...,Mn}, θ(p)n,j = i}, and | · | denotes the set cardinality:

Z̃i
n =

1

|Θi
n|

∑
j∈Θi

n

Zn,j , R̃i =
1

|Θi
n|
Ri, (23)

The µ
(p)
n|n,i,Σ

(p)
n|n,i in (22) are then updated by Kalman

filtering. From the final form of the conditional
p(Xn|θ(p)1:n,K

(p)
1:n, I

(p)
1:n, Z1:n), we can see that each object Xn,i

can be updated independently.

A. A Parallel Implementation of the RB-RJ-SMCMC Sampler

To keep the parallel sampling efficiency, here we adopt
a novel Rao-Blackwellisation scheme similar to [1], where
we first perform the joint RJ-SMCMC to sample from the
posterior p(Xn, θ1:n,K1:n, I1:n|Z1:n); after it converges, we
only keep the samples of θ1:n,K1:n, I1:n to form the empirical
distribution p(θ1:n,K1:n, I1:n|Z1:n), and the marginal poste-
rior of the target state Xn can be calculated as a Gaussian
mixture distribution by (17).



To begin with, we present the derivation of the joint
RJ-SMCMC sampler with its target distribution being
the joint distribution p(Xn, θ1:n,K1:n, I1:n|Z1:n). Assume
that the tracking task has been solved at the previ-
ous time step n − 1, where the posterior distribution
p(Xn−1, θ1:n−1,K1:n−1, I1:n−1|Z1:n−1) is approximated by
an unweighted sequence of Np samples from the conver-
gent Markov chain {X(p)

n−1, θ
(p)
1:n−1,K

(p)
1:n−1, I

(p)
1:n−1}

Np

p=1. By
discarding the samples of Xn−1, the empirical distribution of
p(θ1:n−1,K1:n−1, I1:n−1|Z1:n−1) is expressed as:

p(θ1:n−1,K1:n−1, I1:n−1|Z1:n−1) (24)

≈ 1

Np

Np∑
p=1

δ{θ,K,L}(p)
1:n−1

(θ1:n−1,K1:n−1, I1:n−1)

Thus, the Bayesian recursion can be expressed as follows,
where the joint posterior p(Xn, θ1:n,K1:n, I1:n|Z1:n) is com-
puted sequentially based on p(θ1:n−1,K1:n−1, I1:n−1|Z1:n−1)
at the previous time step n− 1:

p(Xn, θ1:n,K1:n, I1:n|Z1:n) (25)

=
p(Zn|θn, Xn,Mn)

p(Zn|Z1:n−1,Mn)
p(θn|Kn,Mn)p(Kn|Kn−1)

× p(In|Kn−1,Kn)p(Xn|θ1:n−1,K1:n, I1:n, Z1:n−1)

× p(θ1:n−1,K1:n−1, I1:n−1|Z1:n−1)

where p(θ1:n−1,K1:n−1, I1:n−1|Z1:n−1) is the empirical dis-
tribution in (24), p(Zn|θn, Xn,Mn) is the measurement like-
lihood function in (11), and p(θn|Kn,Mn) denotes the as-
sociation prior with an expression in (13). p(Kn|Kn−1) and
p(In|Kn−1,Kn) are given in (4) and (5). The predicted
density p(Xn|θ1:n−1,K1:n, I1:n, Z1:n−1) is in the form of a
Gaussian distribution as in (19).

In this paper, we adopt an independent Metropolis-Hastings
formulation of the RJ-SMCMC method, under which the
proposal function is independent of the previous iteration’s
samples. In this part, we present an adaptive proposal that can
realise a partially parallel sampling structure and may enjoy a
better mixing property than using predictive prior proposals.
In accordance to the principle of choosing the proposal density
that resembles the target distribution, we use the optimal
proposal p(θn,j |Zn,j , Xn) for each of the association variables
θn,j and predictive prior proposals for the target number Kn

and the death identifier In. Both the predictive prior and mea-
surements are considered when proposing the target state Xn.
Accordingly, the proposal density q(Xn, θ1:n,K1:n, I1:n|Z1:n)
is designed in the following form:

q(Xn, θ1:n,K1:n, I1:n|Z1:n) =

Mn∏
j=1

p(θn,j |Zn,j , Xn) (26)

× p(Kn|Kn−1)p(In|Kn−1,Kn)

× qa(Xn|θ1:n−1,K1:n, I1:n, Z1:n)

× p(θ1:n−1,K1:n−1, I1:n−1|Z1:n−1)

where we can see that all the associations θn,j , j = 1, ...,Mn

can be sampled directly from (15) in parallel. The proposal

qa(Xn|θ1:n−1,K1:n, I1:n, Z1:n) for Xn considers both the
form of the target distribution and the newly-received mea-
surements Zn at each time step n, with an expression of:

qa(Xn|θ1:n−1,K1:n, I1:n, Z1:n) (27)

=


q1(Xn,Kn

|Zn)

×
Kn−1∏
i=1

N (Xn,i;µn|n−1,i,Σn|n−1,i) Kn = Kn−1 + 1;

p(Xn|K1:n, I1:n, θ1:n−1, Z1:n−1) Kn ̸= Kn−1 + 1;

where each N (µn|n−1,i,Σn|n−1,i) has the same form in (19)
without the index (·)(p). Specifically, instead of the Gaus-
sian birth prior p1(Xn,Kn) = N (µb, Cb) defined over the
surveillance/birth region, here we design a Gaussian mix-
ture proposal where we first conduct a measurement clus-
tering step to find a group of Nb possible birth locations
{mr}Nb

r=1, and thus q1(Xn,Kn
|Zn) = 1

Nb

∑Nb

r=1 N (mr, Cr).
Other than this target birth proposal, all the remaining pro-
posals are set equal to the target prior transition densities
p(Xn|K1:n, I1:n, θ1:n−1, Z1:n−1).

Assume we have samples θm−1
1:n , Xm−1

n ,Km−1
1:n , Im−1

1:n from
the last iteration m − 1, the procedure of the indepen-
dent Metropolis-Hastings at iteration m is to first draw
new samples θ

′

1:n, X
′

n,K
′

1:n, I
′

1:n from the proposal function
q(Xn, θ1:n,K1:n, I1:n|Z1:n), and then to accept or reject these
new samples based on the acceptance probability, written as:

α(Xm−1
n , {θ,K, I}m−1

1:n ;X
′

n, {θ,K, I}
′

1:n) = min (1, ρ)
(28)

where ρ is the acceptance ratio, computed as:

ρ =
p(X

′

n, θ
′

1:n,K
′

1:n, I
′

1:n|Z1:n)

q(X ′
n, θ

′
1:n,K

′
1:n, I

′
1:n|Z1:n)

(29)

× q(Xm−1
n , θm−1

1:n ,Km−1
1:n , Im−1

1:n |Z1:n)

p(Xm−1
n , θm−1

1:n ,Km−1
1:n , Im−1

1:n |Z1:n)
.

Note that in (29), the Jacobian term for meeting dimension
matching condition is omitted as it is equals to one [17].

By using (10)-(11), (13) and the Bayes’ formula we have
the following relationship:

Mn∏
j=1

p(θn,j |Zn,j , Xn) =

∏Mn

j=1 p(θn,j , Zn,j |Xn)∏Mn

j=1 p(Zn,j |Xn)
(30)

=
p(Zn|θn, Xn,Mn)

p(Zn|Xn,Mn)
p(θn|Kn,Mn)

Thus, the acceptance ratio ρ in (29) can be computed by using
(25), (26) and (30):

ρ =
p(Zn|X

′

n,Mn)

p(Zn|X(m−1)
n ,Mn)

(31)

×
p(X

′

n|θ
′

1:n−1,K
′

1:n, I
′

1:n, Z1:n−1)

p(X
(m−1)
n |θ(m−1)

1:n−1 ,K
(m−1)
1:n , I

(m−1)
1:n , Z1:n−1)

×
qa(X

(m−1)
n |θ(m−1)

1:n−1 ,K
(m−1)
1:n , I

(m−1)
1:n , Z1:n)

qa(X
′
n|θ

′
1:n−1,K

′
1:n, I

′
1:n, Z1:n)

= ρ0 × ρ1



where the first part ρ0 is deduced as

ρ0 =
p(Zn|X

′

n,Mn)

p(Zn|X(m−1)
n ,Mn)

=

∑
θn

p(Zn, θn|X
′

n,K
′

n,Mn)∑
θn

p(Zn, θn|X(m−1)
n ,K

(m−1)
n ,Mn)

=

∑
θn,1

...
∑

θn,Mn

∏Mn

j=1 p(Zn,j , θn,j |X
′

n)∑
θn,1

...
∑

θn,Mn

∏Mn

j=1 p(Zn,j , θn,j |X(m−1)
n )

=

Mn∏
j=1

∑K
′
n

i′=0 p(Zn,j , θn,j = i′|X ′

n,i′)∑K
(m−1)
n

i=0 p(Zn,j , θn,j = i|X(m−1)
n,i )

(32)

Subsequently, the acceptance ratio ρ is computed as:

ρ = ρ0 × ρ1 =


ρ0 × ρ11 Case 1;
ρ0 × ρ21 Case 2;
ρ0 × ρ31 Case 3;
ρ0 × ρ41 Case 4.

(33)

The specific forms of ρ1 for different events are:
• Case 1: K

′

n = K
′

n−1 + 1 and K
(m−1)
n = K

(m−1)
n−1 + 1;

ρ11 =
p1(X

′

n,Kn
)

p1(X
(m−1)
n,Kn

)

q1(X
(m−1)
n,Kn

|Zn)

q1(X
′
n,Kn

|Zn)
(34)

=
N (X

′

n,Kn
;µb, Pb)

N (X
(m−1)
n,Kn

;µb, Pb)

∑Nb

r=1 N (X
(m−1)
n,Kn

;mr, Cr)∑Nb

r=1 N (X
′
n,Kn

;mr, Cr)

• Case 2: K
′

n = K
′

n−1 + 1 and K
(m−1)
n ̸= K

(m−1)
n−1 + 1;

ρ21 =
p1(X

′

n,Kn
)

q1(X
′
n,Kn

|Zn)
= Nb ×

N (X
′

n,Kn
;µb, Pb)∑Nb

r=1 N (X
′
n,Kn

;mr, Cr)

(35)

• Case 3: K
′

n ̸= K
′

n−1 + 1 and K
(m−1)
n = K

(m−1)
n−1 + 1;

ρ31 =
q1(X

(m−1)
n,Kn

|Zn)

p1(X
(m−1)
n,Kn

)
=

∑Nb

r=1 N (X
(m−1)
n,Kn

;mr, Cr)

Nb ×N (X
(m−1)
n,Kn

;µb, Pb)

(36)

• Case 4: K
′

n ̸= K
′

n−1 + 1 and K
(m−1)
n ̸= K

(m−1)
n−1 + 1;

ρ41 = 1 (37)

Therefore, we can observe that the implementation is greatly
simplified as most of the terms are cancelled out in the
calculation of the acceptance ratio.

In sum, the procedure of the independent Metropolis-
Hastings at iteration m with the adaptive proposal in-
cludes the following steps, in which it first jointly draws
θ
′

1:n, X
′

n,K
′

1:n, I
′

1:n, and accept it with a probability of
α(Xm−1

n , {θ,K, I}m−1
1:n ;X

′

n, {θ,K, I}′

1:n).
1) draw {θ′

1:n−1,K
′

1:n−1, I
′

1:n−1} from (24);
2) draw K

′

n and I
′

n from (4) and (5);
3) draw {X ′

n,i}
Kn
i=1 from (27) in parallel;

4) draw {θ′

j,n}
Mn
j=1 from (15) in parallel;

5) accept θ
′

1:n, X
′

n,K
′

1:n, I
′

1:n with a probability of
α(Xm−1

n , {θ,K, I}m−1
1:n ;X

′

n, {θ,K, I}′

1:n)

IV. RESULTS

This section analyses the performance of the proposed
RB-RJ-SMCMC sampler for tracking a time-varying number
of targets in clutter, and compares it with existing trackers
including the PMBM filter in [6] and the SPA-based tracker
in [12]. Here we assume the target shapes and measurement
rates are known and all the compared methods are adjusted
to this fixed parameter setting. We simulated two datasets to
compare the tracking performance of the methods. The first
dataset is a simpler scenario with a lower clutter rate and
fewer target births and deaths, and the second dataset is more
challenging with heavy clutter and frequent target appearing
and disappearing events.

We use the optimal sub pattern assignment (OSPA) [22] and
general OSPA (GOSPA) [23] metrics to evaluate the tracking
performance of all methods. For both the OSPA and GOSPA
metrics, the order is set to p = 1 and the distance cut-off value
is c = 20. For the first dataset, we plot its mean OSPA value
over time since the track is fixed for all simulations. For both
datasets, we calculate the mean OSPA and the mean GOSPA
metrics over Monte Carlo runs. To compare computational
efficiency, we measure the CPU time required at each time step
and average it across all time steps and simulations (System:
Intel(R) Core(TM) i7-8550 CPU at 1.80 GHz, 8 GB RAM).

The general parameter settings are as follows. For all
datasets, the total time steps are 100, and the time interval
between observations is τ = 1s. In the RB-RJ-SMCMC
sampler, we use the DBSCAN algorithm to construct the
adaptive proposal with the maximum distance being 20, and
the minimum cluster member number being 2, and the birth
Gaussian prior is set to cover the whole surveillance re-
gion. For the PMBM filter, the detection probability is 0.99.
The ellipsoidal gate size in probability is 0.999. The global
hypotheses and Bernoulli component pruning thresholds are
10−2 and 10−3, respectively. The maximum global hypothesis
number is 100. To speed up the PMBM filter, the birth area
is set to the ground-truth birth region in the simulations.
The DBSCAN algorithm in the PMBM filter is run with 50
different distance values equally spaced between 1 and 50, and
the maximum assignment number is 20 for Murty’s algorithm.
For the SPA tracker, the object declaration threshold is 0.5, and
the pruning threshold is 10−3. The target birth zone is set to
the whole region, and a distance-based clustering is used to
select a number of the most probable measurements to initiate
the target birth as in [12], instead of using all measurements.

1) Dataset 1 with a lower clutter rate and fewer target
births and deaths: In the first simulation, we have a maximum
of four targets and the changes in the target number over time
are illustrated in Figure 3. The target Poisson rates are set to 5,
and the clutter rate is 50. The parameters in the CV model are
Qi = 8 and Ri = 100I where I is a 2-D identity matrix.
To evaluate the robustness of the algorithm, we generate



(a) Example measurement set from dataset 1 (b) Example measurement set from dataset 2

Fig. 1: Example measurements for each datasets over 100 time steps from 20 Monte Carlo runs; grey dots are measurements;
black lines are ground truth tracks; green rectangle denotes the target birth zone.

Fig. 2: Mean OSPA over 100 time steps.

20 different measurement sets from the same ground-truth
trajectories in Figure 1a, under the same parameter settings.
One sample measurement set is shown in Figure 1a. For the
RB-RJ-SMCMC sampler, we examine two sample sizes: 200
particles and 500 particles with a burn-in time of 50 and 100
iterations, respectively. For the SPA tracker, 3000 particles
with 3 iterations are used in this simulation.

The mean OSPA and mean GOSPA averaged over 20
datasets are shown in Table I. It shows that the proposed
RB-RJ-SMCMC samplers have the lowest mean OSPA and
mean GOSPA values, and the tracking accuracy increases with
the sample size. In addition, the computational time of RB-
RJ-SMCMC200 is also comparable to the fastest method. To
present the tracking performance over time, we plot the mean
OSPA of these methods in Figure 2 over 100 time steps. It
is observed that the proposed method has the smallest mean
OSPA most of the time. In Figure 3, we provide cardinality
estimates of all methods for one example simulation, including
both the cardinality mean point estimates and colormap plot
of the RB-RJ-SMCMC sampler. It verifies that our method
outperforms others with fewer errors in cardinality estimation.

2) Dataset 2 with heavy clutter and frequent target births
and deaths: We set Qi = 9 and Ri = 100I. The target rates
are 10; the clutter rate is 1500. Figure 4 shows the ground truth
target number, where targets appear and disappear frequently
over the 100 time steps. To evaluate the robustness of the

Fig. 3: Ground truth and estimated target number of one
example simulation in dataset 1; the colorbar ranging from
white to black indicates the probability of the cardinality value
at each time step.

TABLE I: Tracking performance of dataset 1

method mean OSPA mean GOSPA CPU time (s)

PMBM 8.19 21.33 0.05
SPA3000−3 5.77 15.93 0.32

RB-RJ-SMCMC200 5.65 15.71 0.08
RB-RJ-SMCMC500 5.58 15.56 0.19

algorithm, we generate 20 simulations with different tracks
and measurements under the same settings, where one sample
measurement set and trajectories are shown in Figure 1b. Here
we evaluate the proposed sampler using 500 particles and
1500 particles with a burn-in time of 100 and 200 iterations,
respectively. For the SPA tracker, we use up to 200 particles
with 3 iterations due to the large computational time it requires
as shown in Table II.

Table II gives the mean OSPA and mean GOSPA averaged
over 20 datasets. To show the effectiveness of the proposed
method more clearly, we analyse one randomly-chosen exam-
ple from 20 simulations, and the target number estimates are
shown in Figure 4. In this heavy clutter case, our trackers
are much faster than all other methods with higher accuracy,
demonstrating the scalability of the proposed methods with
the size of the measurement data.



TABLE II: Tracking performance of dataset 2

method mean OSPA mean GOSPA CPU time (s)

PMBM 10.22 70.39 4.19
SPA50−3 7.13 51.27 25.35
SPA200−3 5.03 36.17 132.3

RB-RJ-SMCMC500 5.01 33.72 0.39
RB-RJ-SMCMC1500 4.84 33.05 1.22

Fig. 4: Ground truth and estimated target number of one
example simulation in dataset 2; the colorbar ranging from
white to black indicates the probability of the cardinality value
at each time step.

V. CONCLUSION

In this paper, we devise a scalable Rao-Blackwellised
reversible jump SMCMC sampler for tracking an unknown
number of objects in clutter. Specifically, we develop an
independent Metropolis-Hastings formulation with an adaptive
proposal function that is independent of the previous iteration’s
samples. The deduced sampler enjoys a partially parallel
sampling structure and the merits of Rao-Blackwellisation,
thus being advantageous in both tracking accuracy and effi-
ciency. Future work includes the design of more sophisticated
sampling schemes and proposal functions to enhance sampling
efficiency. Other modelling assumptions, e.g., [24]–[26] and
birth/death priors will also be investigated for a wider appli-
cation of the current tracker.
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