
EasyChair Preprint

№ 466

Deep Learning On Code with an Unbounded

Vocabulary

Milan Cvitkovic, Badal Singh and Anima Anandkumar

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 29, 2018

Submitted to:
CAV 2018

c© Cvitkovic, Singh, Anandkumar
This work is licensed under the
Creative Commons Attribution License.

Deep Learning On Code with an Unbounded Vocabulary

Milan Cvitkovic∗

Caltech
Pasadena, CA, USA

Amazon AI
Seattle, WA, USA

mcvitkov@caltech.edu

Badal Singh
Amazon Web Services

Seattle, WA, USA
sbadal@amazon.com

Anima Anandkumar
Caltech

Pasadena, CA, USA
Amazon AI

Seattle, WA, USA
anima@caltech.edu

A major challenge when using techniques from Natural Language Processing for supervised learning
on computer program source code is that many words in code are neologisms. Reasoning over such
an unbounded vocabulary is not something NLP methods are typically suited for. We introduce a
deep model that contends with an unbounded vocabulary (at training or test time) by embedding new
words as nodes in a graph as they are encountered and processing the graph with a Graph Neural
Network.

1 Introduction

Computer program source code is an abundant, accessible, and important form of data. But despite
the similarities between natural language and source code, deep learning methods for Natural Language
Processing (NLP) have not been straightforward to apply to learning problems on source code like code
completion and automated variable name generation.[1]

There are many reasons for this, but two central ones are:

1. Code is extremely sensitive to syntax. Natural language sentences can be messy and still get their
point across. It is precisely this lack of rigid structure that makes learning necessary for under-
standing natural language in the first place. But this lack of structure makes source code a challenge
for NLP methods: a tiny change in code syntax can result in a huge change in semantics. E.g. one
tab too few in Python can completely change the contents of a for loop.

2. Code is written using an unbounded vocabulary. Natural language is mostly composed of words
from a large but fixed vocabulary. Standard NLP methods can thus perform well by fixing a large
vocabulary of words before training, labeling the few words they encounter outside this vocabulary
as “Unknown”. But in code every new variable or method declared requires a new, often abstruse,
name. A model must be able to reason about these neologisms to understand code.

Prior work on deep learning for source code has attempted to address the syntax–sensitivity issue. A
common strategy in these works is to represent source code as an Abstract Syntax Tree (AST) rather
than as linear text.

In this work we extend such AST–based representation strategies to attempt to address the unbounded–
vocabulary issue. The model we present does this by representing vocabulary words as nodes in the AST
graph that are added as they are encountered, essentially using the graph as an unbounded, relational
vocabulary cache. This, in principle, gives the model a way to reason during testing over words and
phrases it never encountered during training.

∗Corresponding author

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Deep Learning On Code with an Unbounded Vocabulary

2 Related Work

Representing Code as a Graph

Given their prominence in the study of programming languages, ASTs and parse trees are a natural choice
for representing code and have been used extensively. Often models consume ASTs by linearizing them
(usually with a depth–first traversal) [3, 20, 18], but they can also be processed by deep learning models
that take graphs as input, as in [31, 8] who use Recursive Neural Networks (RveNNs) [11] on ASTs.
RveNNs are models that operate on tree–topology graphs, and have been used extensively for language
modeling [29] and on domains similar to source code, like mathematical expressions [33, 4]. They can
be considered a specialized type of Message Passing Neural Network (MPNN) [10]: in this analogy
RveNNs are to Belief Propagation as MPNNs are to Loopy Belief Propagation. ASTs also serve as a
natural basis for models that generate code as output, as in [23, 32, 26, 8].

Data–flow graphs are another type of graphical representation of source code with a long history
[17], and they have occasionally been used to featurize source code for machine learning [7].

Most closely related to our work is the recent work of [2], on which our model is heavily based.
They combine the data–flow graph and AST representation approaches by representing source code as
an AST augmented with extra labeled edges indicating semantic information like data– and control–flow
between variables. These augmentations yield a directed graph rather than just a tree, so they (and we)
use a variety of MPNN called a Gated Graph Neural Network (GGNN) [19] to consume the augmented
AST.

Graph-based models that are not based on ASTs are also sometimes used for analyzing source code,
like Conditional Random Fields for joint variable name prediction in [27]

Reasoning about Neologism

The question of how to gracefully handle out–of–vocabulary words is an old one in NLP. Character–level
embeddings are a typical way deep learning models handle this issue, whether used on their own [14], or
in conjunction with word–level embedding Recursive Neural Networks (RNNs) [22], or in conjunction
with an n–gram model [6]. Another approach is to learn new word embeddings on–the–fly from context
[16].

In terms of producing outputs over variable–sized input and outputs, attention-based pointer mecha-
nisms were introduced in [30] and used to great effect in NLP in [24], whose sentinel pointing model we
take inspiration from in the Variable Naming task below (although they use a fixed vocabulary).

Using graphs to represent arbitrary collections of entities and their relationships for processing by
deep networks has been widely used [13, 5, 25, 21], but to our knowledge we are the first to use a
graph–building strategy for reasoning (at train and test time) about an unbounded vocabulary of words.

3 Model

The way our model takes some file or snippet of source code as input and produces an output for a
supervised learning task is sketched in Figure 1. In more detail, the model performs these four steps:

1. Parse the source code into an Abstract Syntax Tree.

2. Add edges of varying types (described in Appendix Table 4) to this syntax tree representing se-
mantic information like data– and control– flow, in the spirit of [2]. Also add the reversed version

Cvitkovic, Singh, Anandkumar 3

 /** SomeFile.java

. .
 .

Method Declaration

Parameter Code
Block

Method Call

add Foo

myBaz

add

foo

Name Expr

foo

Field
Access

 public void addFoo(Foo foo){
 this.myBaz.add(foo);
 }

foo

add

my

baz

Parse source code into
Abstract Syntax Tree

Augment AST with
semantic information

Represent vocabulary as
nodes in the Augmented AST

Process Augmented AST
with Graph Neural Network

Output

. .
 .

Method Declaration

Parameter Code
Block

Method Call

add Foo

myBaz

add

foo

Name Expr

foo

Field
Access

Last Use

Field
Reference

Next Node

. .
 . . .
 .

Method Declaration

Parameter Code
Block

Method Call

add Foo

myBaz

add

foo

Name Expr

foo

Field
Access

Last Use

Field
Reference

Next Node

. .
 .

Subtoken
Use

Figure 1: Our model’s procedure for supervised learning on source code.

of all edges (with their own edge type) to permit messages to be sent in both directions between
connected nodes in the graph. This results in a directed multigraph we call an Augmented AST.

3. Further augment the Augmented AST by adding a node for each vocabulary word encountered in
the code. Each such “vocab node” is then connected with an edge to all variables whose names
contain its word. (Following previous work we consider a variable’s name to be a sequence of
separate words, based on CamelCase or snake_case conventions. This is depicted in Figure 1.)

4. Process the Augmented AST with a Gated Graph Neural Network. To do this we must first vector-
ize the nodes of the Augmented AST. We vectorize vocab nodes using a Character–Level Convo-
lutional Neural Network (CharCNN) [34] embedding of the node’s word. We vectorize all other
nodes with a learned embedding of their type. The type of a non–leaf node in the AST is the
language construct it represents, e.g. Parameter, Method Declaration, etc. The type of a leaf node
in the AST (i.e. a node representing a written token of code) is the name of the Java type of the
token it contains, e.g. int, a user–defined class, etc.
Processing by the GGNN results in hidden state vectors for every node in the Augmented AST,
which are then used produce output in a task–specific way. (Described in the Experiments section.)

Our main contribution to previous works is the addition of Step 3. The combination of relational
information from the vocab nodes’ connections and lexical information from these nodes’ CharCNN em-
beddings allows the model to, in principle, flexibly reason about words it never saw during training, but
also recognize words it did. E.g. it could potentially see a class named “getGuavamaticDictionary”
and a variable named “guavamatic_dict” and both (a) utilize the fact that the word “guavamatic” is
common to both names despite having never seen this word before, and (b) exploit learned representa-
tions for words like “get”, “dictionary”, and “dict” that it has seen during training.

4 Experiments

Code to reproduce all experiments is available online.1 2

We compared our model to two other models on two supervised tasks: a Fill–In–The–Blank task and
a Variable–Naming task.

The models to which we compare differ from ours in how they treat the words they encounter in the
code. The model referred to below as “Fixed Vocab” is very similar to the model from [2]. It follows

1https://github.com/mwcvitkovic/Deep Learning On Code With A Graph Vocabulary–Code Preprocessor
2https://github.com/mwcvitkovic/Deep Learning On Code With A Graph Vocabulary

https://github.com/mwcvitkovic/Deep_Learning_On_Code_With_A_Graph_Vocabulary--Code_Preprocessor
https://github.com/mwcvitkovic/Deep_Learning_On_Code_With_A_Graph_Vocabulary

4 Deep Learning On Code with an Unbounded Vocabulary

steps 1 and 2 from the steps in the Method section above, but it skips step 3, and in step 4 it uses a
fixed vocabulary embedding to vectorize names (by looking up the embedding for the name’s constituent
words and taking their mean). The “CharCNN Only” model operates identically to this Fixed Vocab
model, except it uses a CharCNN to vectorize the names of variables. The “Graph Vocab” model is our
model that operates as described in the Method section.

For each task, we also compared the effects of augmenting the AST with extra edges (step 2 from the
Method section). We list the performance of each model trained with the plain AST and the Augmented
AST.

4.1 Data and Model Details

We randomly selected 18 of the 100 most popular Java repos from the Maven repository3 to serve as train-
ing data. (See Appendix A for the list.) Together these repositories contain about 500,000 non–empty,
non–comment lines of code. We randomly chose 3 of these repositories to sequester as an “entirely un-
seen repos” test set. We then separated out 15% of the files in the remaining 15 repositories to serve as
our “unseen files from seen repos” test set. The remaining files served as our training set, from which we
separated 15% of the datapoints to act as a validation set.

We used the open–source Javaparser4 library to generate ASTs of our source code, and then used
home–built code to augment the ASTs with the edges described in Appendix Table 4. We used MXNet
as our deep learning framework, relying heavily on sparse operations for the GGNN implementation.
All hidden states in the GGNN contained 64 units; all GGNNs ran for 8 rounds of message passing; all
models were optimized using the Adam optimizer. [15]

4.2 The Fill–In–The–Blank Task

In this task we randomly selected a single usage of a variable in some source code, replaced it with
a <FILL-IN-THE-BLANK> token, and then asked the model to predict what variable should have been
there. An example instance is shown in Appendix Figure 2. We only selected variable usages where the
variable is used somewhere else in the code, so the models could indicate their choice by neural attention.
All models computed the attention weighting yi for each variable i as per [19]:

yi = σ
(

f1(hT
v ,h

0
v)
)
� f2(hT

v),

where the f s are MLPs, ht
v is the hidden state of node v after t GGNN message passing iterations, σ is

the sigmoid function, and � is elementwise multiplication. The models were trained using a binary cross
entropy loss computed separately for each attended node. Performance is reported in Table 1.

4.3 The Variable Naming Task

In this task we replaced all usages of a name of a particular variable in the code with the text “<NAME-ME>”,
and asked the model to produce the correct name for this variable (in the form of the sequence of words
that compose the name). An example instance is shown in Appendix Figure 3.

To produce a name from the output of the GGNN, our models followed [2] by taking the mean of
the hidden states of the <NAME-ME> nodes and passing this as the initial hidden state to a 1–layer Gated
Recurrent Unit (GRU) RNN [9]. To convert the hidden state output of this GRU into variable name

3https://mvnrepository.com/
4https://javaparser.org/

https://mvnrepository.com/
https://javaparser.org/

Cvitkovic, Singh, Anandkumar 5

Table 1: Accuracy on the Fill–In–The–Blank task. A correct prediction is one in which the Augmented
AST node that received the maximum attention weighting by the model contained the variable that was
originally in the <FILL-IN-THE-BLANK> spot.

Fixed Vocab CharCNN Only Graph Vocab (ours)

Unseen files from seen repos AST 0.58 0.60 0.89
Augmented AST 0.80 0.90 0.97

Entirely unseen repos AST 0.36 0.48 0.80
Augmented AST 0.59 0.84 0.92

predictions, the Fixed Vocab and CharCNN Only models passed the hidden states through a linear layer
mapping to indices of words in their fixed vocabularies (i.e. a traditional decoder output for NLP). In
contrast, the Graph Vocab model used the hidden state outputs of the GRU to compute dot–product
attention with the hidden states of its vocab nodes and, as per [24], with a sentinel vector that lets the
model fall back to a fixed vocabulary to produce words that are were visible in the graph. The models
were trained by cross entropy loss over the sequence of words in the name. Performance is reported in
Table 2.

Table 2: Performance on the Variable Naming task. Entries in this table are of the form “accuracy (edit
distance)”. A correct output is exact reproduction of the full name of the obfuscated variable. The edit
distance is the mean of the character–wise Levenshtein distance between the produced name and the real
name.

Fixed Vocab CharCNN Only Graph Vocab (ours)

Unseen files from seen repos AST 0.23 (7.22) 0.22 (8.67) 0.49 (3.87)
Augmented AST 0.19 (7.64) 0.20 (7.46) 0.53 (3.68)

Entirely unseen repos AST 0.05 (8.66) 0.06 (8.82) 0.38 (4.81)
Augmented AST 0.04 (8.34) 0.06 (8.16) 0.41 (4.28)

5 Discussion

As can be seen in Tables 1 and 2, our Graph Vocab model outperforms the other models tested, and
does comparatively well at maintaining accuracy between the seen and unseen test repos on the Variable
Naming task.

The results reported herein are part of a continuing project, and we are pursuing several improve-
ments to the model described above. In particular, we hope to add information about the word ordering
in names and to improve how we vectorize information regarding a variable’s data type. Also, there are
many other types of Graph Neural Networks that could be used in place of the GGNN that are worth
evaluating.

6 Acknowledgements

Many thanks to Miltos Allamanis and Hyokun Yun for their advice and useful conversations.

6 Deep Learning On Code with an Unbounded Vocabulary

References

[1] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu & Charles Sutton (2017): A Survey of Machine
Learning for Big Code and Naturalness. arXiv:1709.06182 [cs]. Available at https://arxiv.org/abs/
1709.06182.

[2] Miltiadis Allamanis, Marc Brockschmidt & Mahmoud Khademi (2018): Learning to Represent Pro-
grams with Graphs. In: International Conference on Learning Representations. Available at https:
//openreview.net/forum?id=BJOFETxR-.

[3] Matthew Amodio, Swarat Chaudhuri & Thomas Reps (2017): Neural Attribute Machines for Program Gen-
eration. arXiv:1705.09231 [cs]. Available at http://arxiv.org/abs/1705.09231.

[4] Forough Arabshahi, Sameer Singh & Animashree Anandkumar (2018): Combining Symbolic Expressions
and Black-box Function Evaluations for Training Neural Programs. In: International Conference on Learn-
ing Representations. Available at https://openreview.net/forum?id=Hksj2WWAW.

[5] Trapit Bansal, Arvind Neelakantan & Andrew McCallum: RelNet: End-to-End Modeling of Entities & Rela-
tions. arXiv:1706.07179 [cs]. Available at http://arxiv.org/abs/1706.07179.

[6] Piotr Bojanowski, Edouard Grave, Armand Joulin & Tomas Mikolov (2017): Enriching Word Vectors with
Subword Information. TACL 5, pp. 135–146.

[7] Kwonsoo Chae, Hakjoo Oh, Kihong Heo & Hongseok Yang (2017): Automatically Generating Features for
Learning Program Analysis Heuristics for C-like Languages. Proc. ACM Program. Lang. 1(OOPSLA), pp.
101:1–101:25, doi:10.1145/3133925. Available at http://doi.acm.org/10.1145/3133925.

[8] Xinyun Chen, Chang Liu & Dawn Song (2018): Tree-to-tree Neural Networks for Program Translation.
Available at https://openreview.net/forum?id=rkxY-sl0W.

[9] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk & Yoshua Bengio (2014): Learning Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation. In: Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Association for Computational Linguistics, pp. 1724–1734,
doi:10.3115/v1/D14-1179. Available at http://www.aclweb.org/anthology/D14-1179.

[10] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals & George E. Dahl (2017): Neural
Message Passing for Quantum Chemistry. In Doina Precup & Yee Whye Teh, editors: Proceedings of the
34th International Conference on Machine Learning, Proceedings of Machine Learning Research 70, PMLR,
International Convention Centre, Sydney, Australia, pp. 1263–1272. Available at http://proceedings.
mlr.press/v70/gilmer17a.html.

[11] C. Goller & A. Kuchler (1996): Learning task-dependent distributed representations by backpropagation
through structure. In: Neural Networks, 1996., IEEE International Conference on, 1, pp. 347–352 vol.1,
doi:10.1109/ICNN.1996.548916.

[12] L. Jiang, G. Misherghi, Z. Su & S. Glondu (2007): DECKARD: Scalable and Accurate Tree-Based Detec-
tion of Code Clones. In: 29th International Conference on Software Engineering (ICSE’07), pp. 96–105,
doi:10.1109/ICSE.2007.30.

[13] Daniel D. Johnson (2017): Learning Graphical State Transitions. In: International Conference on Learning
Representations. Available at https://openreview.net/forum?id=HJ0NvFzxl.

[14] Yoon Kim, Yacine Jernite, David Sontag & Alexander M. Rush (2016): Character-aware Neural Language
Models. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, AAAI Press,
pp. 2741–2749. Available at http://dl.acm.org/citation.cfm?id=3016100.3016285.

[15] Diederik P. Kingma & Jimmy Ba (2015): Adam: A Method for Stochastic Optimization. In: International
Conference on Learning Representations. Available at https://arxiv.org/abs/1412.6980.

[16] Sosuke Kobayashi, Ran Tian, Naoaki Okazaki & Kentaro Inui (2016): Dynamic Entity Representation with
Max-pooling Improves Machine Reading. In: Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for

https://arxiv.org/abs/1709.06182
https://arxiv.org/abs/1709.06182
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
http://arxiv.org/abs/1705.09231
https://openreview.net/forum?id=Hksj2WWAW
http://arxiv.org/abs/1706.07179
http://dx.doi.org/10.1145/3133925
http://doi.acm.org/10.1145/3133925
https://openreview.net/forum?id=rkxY-sl0W
http://dx.doi.org/10.3115/v1/D14-1179
http://www.aclweb.org/anthology/D14-1179
http://proceedings.mlr.press/v70/gilmer17a.html
http://proceedings.mlr.press/v70/gilmer17a.html
http://dx.doi.org/10.1109/ICNN.1996.548916
http://dx.doi.org/10.1109/ICSE.2007.30
https://openreview.net/forum?id=HJ0NvFzxl
http://dl.acm.org/citation.cfm?id=3016100.3016285
https://arxiv.org/abs/1412.6980

Cvitkovic, Singh, Anandkumar 7

Computational Linguistics, San Diego, California. Available at http://www.aclweb.org/anthology/
N16-1099.

[17] Jens Krinke (2001): Identifying Similar Code with Program Dependence Graphs. In: Proceedings of the
Eighth Working Conference on Reverse Engineering (WCRE’01), WCRE ’01, IEEE Computer Society,
Washington, DC, USA, pp. 301–. Available at http://dl.acm.org/citation.cfm?id=832308.837142.

[18] Jian Li, Yue Wang, Irwin King & Michael R. Lyu (2017): Code Completion with Neural Attention and Pointer
Networks. arXiv:1711.09573 [cs]. Available at http://arxiv.org/abs/1711.09573.

[19] Yujia Li, Daniel Tarlow, Marc Brockschmidt & Richard Zemel (2016): Gated Graph Sequence Neural Net-
works. In: International Conference on Learning Representations. Available at https://arxiv.org/abs/
1511.05493.

[20] Chang Liu, Xin Wang, Richard Shin, Joseph E. Gonzalez & Dawn Xiaodong Song (2017): Neural Code
Completion. Available at https://openreview.net/forum?id=rJbPBt9lg¬eId=rJbPBt9lg.

[21] Zhengdong Lu, Haotian Cui, Xianggen Liu, Yukun Yan & Daqi Zheng (2017): Object-oriented Neural
Programming (OONP) for Document Understanding. arXiv:1709.08853 [cs]. Available at http://arxiv.
org/abs/1709.08853. ArXiv: 1709.08853.

[22] Minh-Thang Luong & Christopher D. Manning (2016): Achieving Open Vocabulary Neural Machine Trans-
lation with Hybrid Word-Character Models. arXiv:1604.00788 [cs]. Available at http://arxiv.org/abs/
1604.00788.

[23] Chris J. Maddison & Daniel Tarlow (2014): Structured Generative Models of Natural Source Code, pp.
II–649–II–657. Available at http://dl.acm.org/citation.cfm?id=3044805.3044965.

[24] Stephen Merity, Caiming Xiong, James Bradbury & Richard Socher (2017): Pointer Sentinel Mixture Models.
In: International Conference on Learning Representations. Available at https://openreview.net/pdf?
id=Byj72udxe.

[25] Trang Pham, Truyen Tran & Svetha Venkatesh: Graph Memory Networks for Molecular Activity Prediction.
arXiv:1801.02622 [cs]. Available at http://arxiv.org/abs/1801.02622.

[26] Maxim Rabinovich, Mitchell Stern & Dan Klein (2017): Abstract Syntax Networks for Code Generation
and Semantic Parsing. In: Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, pp. 1139–1149,
doi:10.18653/v1/P17-1105. Available at http://www.aclweb.org/anthology/P17-1105.

[27] Veselin Raychev, Martin Vechev & Andreas Krause (2015): Predicting Program Properties from ”Big Code”.
In: Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15, ACM, New York, NY, USA, pp. 111–124, doi:10.1145/2676726.2677009. Available
at http://doi.acm.org/10.1145/2676726.2677009.

[28] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov & Max Welling
(2017): Modeling Relational Data with Graph Convolutional Networks. arXiv:1703.06103 [cs, stat]. Avail-
able at http://arxiv.org/abs/1703.06103.

[29] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng & Christo-
pher Potts (2013): Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank.
In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Asso-
ciation for Computational Linguistics, Seattle, Washington, USA, pp. 1631–1642. Available at http:
//www.aclweb.org/anthology/D13-1170.

[30] Oriol Vinyals, Meire Fortunato & Navdeep Jaitly (2015): Pointer Networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama & R. Garnett, editors: Advances in Neural Information Processing
Systems 28, Curran Associates, Inc., pp. 2692–2700. Available at http://papers.nips.cc/paper/
5866-pointer-networks.pdf.

[31] M. White, M. Tufano, C. Vendome & D. Poshyvanyk (2016): Deep learning code fragments for code clone
detection. In: 2016 31st IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 87–98. Available at http://www.cs.wm.edu/~mtufano/publications/C5.pdf.

http://www.aclweb.org/anthology/N16-1099
http://www.aclweb.org/anthology/N16-1099
http://dl.acm.org/citation.cfm?id=832308.837142
http://arxiv.org/abs/1711.09573
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1511.05493
https://openreview.net/forum?id=rJbPBt9lg¬eId=rJbPBt9lg
http://arxiv.org/abs/1709.08853
http://arxiv.org/abs/1709.08853
http://arxiv.org/abs/1604.00788
http://arxiv.org/abs/1604.00788
http://dl.acm.org/citation.cfm?id=3044805.3044965
https://openreview.net/pdf?id=Byj72udxe
https://openreview.net/pdf?id=Byj72udxe
http://arxiv.org/abs/1801.02622
http://dx.doi.org/10.18653/v1/P17-1105
http://www.aclweb.org/anthology/P17-1105
http://dx.doi.org/10.1145/2676726.2677009
http://doi.acm.org/10.1145/2676726.2677009
http://arxiv.org/abs/1703.06103
http://www.aclweb.org/anthology/D13-1170
http://www.aclweb.org/anthology/D13-1170
http://papers.nips.cc/paper/5866-pointer-networks.pdf
http://papers.nips.cc/paper/5866-pointer-networks.pdf
http://www.cs.wm.edu/~mtufano/publications/C5.pdf

8 Deep Learning On Code with an Unbounded Vocabulary

[32] Pengcheng Yin & Graham Neubig (2017): A Syntactic Neural Model for General-Purpose Code Generation.
In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Association for Computational Linguistics, pp. 440–450, doi:10.18653/v1/P17-1041. Avail-
able at http://www.aclweb.org/anthology/P17-1041.

[33] Wojciech Zaremba, Karol Kurach & Rob Fergus (2014): Learning to Discover Efficient Mathematical
Identities. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence & K. Q. Weinberger, editors: Advances
in Neural Information Processing Systems 27, Curran Associates, Inc., pp. 1278–1286. Available at http://
papers.nips.cc/paper/5350-learning-to-discover-efficient-mathematical-identities.

pdf.
[34] Xiang Zhang, Junbo Zhao & Yann LeCun (2015): Character-level Convolutional Net-

works for Text Classification. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama
& R. Garnett, editors: Advances in Neural Information Processing Systems 28, Cur-
ran Associates, Inc., pp. 649–657. Available at http://papers.nips.cc/paper/

5782-character-level-convolutional-networks-for-text-classification.pdf.

7 Appendix

Figures 2 and 3 show, respectively, an example instance of the Fill–In–The–Blank and Variable Naming
tasks. Table 3 lists the repositories used to in our dataset. Table 4 lists the edges added to the AST to
create the Augmented AST.

public static boolean isPrime(int n) {

if (n < 2) {

return false;

}

for (int p : SmallPrimes.PRIMES) {

if (0 == (n % p)) {

return n == p;

}

}

return SmallPrimes.millerRabinPrimeTest(n);

}

Figure 2: Example instance of the Fill–In–The–Blank task. This particular Fill–In–The–Blank in-
stance is created by replacing the red–highlighted usage of the variable “n” with the special token
<FILL-IN-THE-BLANK>. The model then processes the Java file containing this snippet according to
Figure 1 to produce an Augmented AST. This Augmented AST is too large to show here, but the model
indicates which variable was originally present in the <FILL-IN-THE-BLANK> slot by attending to nodes
in this Augmented AST. So if the model places maximal attention on any of the nodes representing the
green–highlighted variables, this is a correct output. If maximal attention is placed on any other node in
the Augmented AST it is an incorrect output.

http://dx.doi.org/10.18653/v1/P17-1041
http://www.aclweb.org/anthology/P17-1041
http://papers.nips.cc/paper/5350-learning-to-discover-efficient-mathematical-identities.pdf
http://papers.nips.cc/paper/5350-learning-to-discover-efficient-mathematical-identities.pdf
http://papers.nips.cc/paper/5350-learning-to-discover-efficient-mathematical-identities.pdf
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf

Cvitkovic, Singh, Anandkumar 9

String header = message == null ? "" : message + ": ";

int expectedsLength = assertArraysAreSameLength(expecteds ,

actuals , header);

for (int i = 0; i < expectedsLength ; i++) {

Object expected = Array.get(expecteds , i);

Object actual = Array.get(actuals , i);

if (isArray(expected) && isArray(actual)) {

try {

arrayEquals(message , expected , actual);

} catch (ArrayComparisonFailure e) {

e.addDimension(i);

throw e;

}

} else {

try {

assertElementsEqual(expected , actual);

} catch (AssertionError e) {

throw new ArrayComparisonFailure(header , e, i);

}

}

}

Figure 3: Example instance of the Variable Naming task. This particular Variable Naming instance is
created by replacing all uses of the name of the “expectedsLength” variable, shown highlighted in green,
with “<NAME-ME>”. The model then processes the Java file containing this snippet according to Figure
1 to produce an Augmented AST. It then generates a sequence of tokens as its output in an attempt to
generate the name of the obfuscated variable; in this case the correct output would be “[‘expecteds’,
‘length’, ‘<EOS>’]”.

10 Deep Learning On Code with an Unbounded Vocabulary

Table 3: Repositories used in experiments. All were taken from the Maven repository
(https://mvnrepository.com/). Entries are in the form “group/repository name/version”.

Seen Repos
com.fasterxml.jackson.core/jackson-core/2.9.5
com.h2database/h2/1.4.195
javax.enterprise/cdi-api/2.0
junit/junit/4.12
mysql/mysql-connector-java/6.0.6
org.apache.commons/commons-collections4/4.1
org.apache.commons/commons-math3/3.6.1
org.apache.commons/commons-pool2/2.5.0
org.apache.maven/maven-project/2.2.1
org.codehaus.plexus/plexus-utils/3.1.0
org.eclipse.jetty/jetty-server/9.4.9.v20180320
org.reflections/reflections/0.9.11
org.scalacheck/scalacheck 2.12/1.13.5
org.slf4j/slf4j-api/1.7.25
org.slf4j/slf4j-log4j12/1.7.25
Unseen Repos
org.javassist/javassist/3.22.0-GA
joda-time/joda-time/2.9.9
org.mockito/mockito-core/2.17.0

https://mvnrepository.com/

Cvitkovic, Singh, Anandkumar 11

Table 4: Edge types used in Augmented ASTs. The initial AST is constructed using the AST and NEXT_-

TOKEN edges, and then the remaining edges are added. The reversed version of every edge is also added
as its own type (e.g. reverse_AST, reverse_LAST_READ) to let the GGNN message passing occur in
both directions.

Edge Name Description

AST The edges used to construct the original AST.
NEXT_TOKEN Edges added to the original AST that specify the left–to–right

ordering of the children of a node in the AST. These edges
are necessary since ASTs have ordered children, but we are
representing the AST as a directed graph.

COMPUTED_FROM Connects a node representing a variable on the left of an equal-
ity to those on the right. (E.g. edges from y to x and z to x in
x = y + z.) The same as in [2].

LAST_READ Connects a node representing a usage of a variable to all nodes
in the AST at which that variable’s value could have been last
read from memory. The same as in [2].

LAST_WRITE Connects a node representing a usage of a variable to all nodes
in the AST at which that variable’s value could have been last
written to memory. The same as in [2].

RETURNS_TO Points a node in a return statement to the node containing the
return type of the method. (E.g. x in return x gets an edge
pointing to int in public static int getX(x).)

LAST_SCOPE_USE Connects a node representing a variable to the node represent-
ing the last time this variable’s name was used in the text of the
code (i.e. capturing information about the text, not the control
flow), but only within lexical scope. This edge exists to try and
give the non–Graph–Vocab models as much lexical informa-
tion as possible to make them as comparable with the Graph
Vocab model.

LAST_FIELD_LEX Connects a field access (e.g. this.whatever or
Foo.whatever) node to the last use of this.whatever (or
to the variable’s initialization, if it’s the first use). This is not
lexical–scope aware (and, in fact, can’t be in Java, in general).

FIELD Points each node representing a field access (e.g.
this.whatever) to the node where that field was declared.

SUBTOKEN Points vocab nodes to nodes representing variables in which
the vocab word was used in the variable’s name.

	Introduction
	Related Work
	Model
	Experiments
	Data and Model Details
	The Fill–In–The–Blank Task
	The Variable Naming Task

	Discussion
	Acknowledgements
	Appendix

