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Abstract— —Reinforcement learning (RL) methods play a
crucial role in training bipedal robot locomotion. However,
there exists a practical challenge in that well-trained robot
policies cannot be directly deployed to different robot dy-
namics, due to the dynamics gap between the training and
the application environment, making the policies inflexible for
application in various robot tasks. To address this issue, we
propose a rapid adaption framework, named Discriminative
Internal Model (DIM), which attempts to accelerate the adap-
tion efficiency of RL agents and improve the generalization
ability in various dynamic environments. Specifically, DIM first
learns a parameterized dynamics model, called internal model
(IM), in the training environment. In the adaptation phase, the
learned IM uses a small number of transitions to quickly adapt
to the new environment. The “fine-tuned” IM can simulate
rollouts close to the new environment’s distribution to speed up
policy adaptation. To avoid generating unreliable rollouts that
degrade the performance of the policy, we further proposed a
state discriminator. It evaluates the reliability of the internal
model in each state to determine the number of augmentation
rollouts at that state. To demonstrate the effectiveness of the
DIM framework, we conduct experiments on a bipedal robot
for dynamics transfer and sim-to-real transfer tasks. Extensive
experimental evaluations on bipedal locomotion demonstrate
that the proposed DIM outperforms the state-of-the-art model-
free RL methods.

I. INTRODUCTION

Designing robust walking policies for bipedal robots based
on classical control requires precise robot dynamics models
and human expertise to plan motion trajectories. [1], [2].
Recent model-free reinforcement learning (MFRL) methods
have demonstrated promising results on both simulation
and physical robots [3], [4]. MFRL could optimize the
control policies directly without modeling the environmental
dynamics.
However, a notorious weakness is that the MFRL policy is
limited to specified dynamics and tasks. The control policies
trained in predefined dynamics can not be directly transferred
to the target robot [5], [6]. The performance of the policies
trained in the source would drop significantly in the target
due to the gap between the environments [7].
Existing approaches for tackling the transfer problems in
bipedal robotic tasks include dynamics/domain randomiza-
tion (DR) and system identification (SI) [4], [8] System
identification [6], [9].Nonetheless, neither of the two ap-
proaches above guarantees a realistic enough simulator. For
example, external noise (e.g. temperature, wear, and tear) can
cause various physical parameters in the same robot, making
it difficult to build accurate simulators. As a result, these
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Fig. 1. We set 4 different tasks by varying dynamics parameters. The
center of mass(CoM) of the robot. The forward b) velocity of the robot.
The c) friction coefficient and the damping coefficient of the feet.

methods will fail when policies are deployed in complex
environments with more extreme variances, such as large
changes in the center of mass (CoM) or friction. And it is
impractical to simulate all robot dynamics situations during
training.
In this work, A novel Discriminative Internal Model (DIM)

is proposed to address the above-mentioned issues. In the
training phase, an internal model is learned while training
an MFRL policy, which aims to estimate the state transi-
tion of the robot dynamics. In the adaptation phase, the
internal model performs transition generation to accelerate
MFRL policy adaptation. Intuitively, this is a combination
of MFRL and model-based RL (MBRL). However, existing
model-based generation usually ignores the reliability of the
learned, and applies the model indiscriminately to all states
[10], [11]. To mitigate this problem, our DIM employs a
more intelligent and efficient way for data augmentation, it
evaluates the reliability of the internal model in a state to
determine the amount of augmentation data at that state. The
contributions of this method can be summarized as follows.

• We developed a framework that combines MFRL and
MBRL for transfer learning. To our knowledge, this is
the first application of the combination of MBRL and
MFRL to a bipedal robot.

• An internal model (IM) is learned and applied to look
forward from the current state and generate a series of
trajectories to improve policy learning when adapting
to new dynamics. DIM first predicts future transitions
through a learned environment/dynamics model. The
predicted trajectories are mixed into real interaction data
to improve policy learning, which can be regarded as a
kind of data augmentation.



• We build bipedal robots in PyBullet1 and Gazebo2

simulation, respectively, to verify the generalization
performance of bipedal locomotion policies, including
task generalization and dynamics generalization. Com-
pared with related algorithms, the proposed method
achieves state-of-the-art performance, demonstrating the
superiority of the proposed model for adapting to a
variety of unseen scenarios including extremely low
friction situations, and unstable CoM situations.

II. RELATED WORK

A. Policy transfer in robotic tasks

Policy transfer for robots aims to study transferring the
policies from training environments to testing environments
[12], [13]. Existing work can be divided into two categories,
one is to improve the robustness of the policy so that it can
be applied to new environments, and the other is to train a
policy that can adapt quickly.
Leaning a robust policy. Dynamics Randomization (DR) is
one of the most popular approaches to improve the robustness
of the RL policies [14], [15]. It aims to conduct variety
environments or diverse robot dynamics to train the agent for
a more robust policy [4], [8], which has achieved promising
results in manipulation [16], legged locomotion [17] and
visual navigation [18]. Besides, adversarial RL methods
also focus on improving the robustness of the model. They
train an adversarial controller to generate more difficult and
diverse environments. The agent is trained in the environment
with disturbances that are generated by the destabilizing
adversary [19]. However, it is impractical to simulate or
generate all robot dynamics situations during training, which
results in the agent’s still limited adaptation to the new
environment.
Learning to adapt quickly. Instead of learning a robust pol-
icy, a different perspective is transfer learning (TL) methods.
TL aims at improving the adaptation ability of target learners
on target domains by transferring the knowledge acquired in
source domains. It provides a feasible solution for online
adaptation. Meta-learning focus on “learn-to-learn", which
learns a policy with the ability to adapt quickly. K. Arndt
et al. [20] let a meta policy search in a latent space for
faster adaptation. In contrast to meta-learning, X. B. Penet al.
[21] addressed the domain gap through a domain adaptation
technique that maps the features of source and target domains
to the same space.

Nevertheless, transferring an RL policy is not feasible
when there is a large gap between training and testing
environments [22], [23]. This is because learning MFRL
policies through bootstrapping is unstable [24]. The proposed
DIM method focuses on transferring the dynamics model.
Learning DIM through supervised learning is more stable
than bootstrapping. Thus, transferring the dynamics model
is more feasible than transferring the policy directly.

1https://pybullet.org
2https://gazebosim.org

B. Model-based RL

In contrast to the model-free RL, model-based approaches
utilize an approximate dynamics model to mitigate the prob-
lem of sample inefficiency [25], [26]. Such a dynamics model
can then be used to control through planning or to improve
the data efficiency by performing transition augmentation.
Planning. Model predictive control (MPC) [27] achieves
great success on numerous robotic tasks by selecting the best
action according to model planning trajectories [28]. [29] and
[30] construct implicit plans to obtain rollout trajectories by
using a learned environment/dynamics model and a model-
free policy. The rollout trajectories are then simply encoded
into policy networks as additional information to improve
MFRL. However, the planning methods tend to fall into a
local optimal due to the cumulative prediction error.
Data augmentation. Another usage of model-based methods
is to perform data augmentation for model-free algorithms.
The underlying idea is to speed up policy training by
using model-generated data [31]. Model-based value expan-
sion(MBVE) generates a fixed horizon to update the Q-
function [32]. Based on MBVE, [33] further shows that using
the rollouts with high model accuracy is more effective than
using a fixed horizon. To promote the model generaliza-
tion, the context-based methods are employed to train the
dynamics model and proved to be efficient [11], [34]. Our
DIM method makes use of the advantages of context-based
methods that capture the features from history trajectory
by Recurrent Neural Networks (RNN) [35]. Moreover, we
consider model accuracy in the target environment when
performing the data augmentation.

III. PRELIMINARIES

In this section, we will briefly introduce the definition
and notation of the RL framework. Specifically, bipedal
locomotion is formulated as a Markov Decision Process
(MDP) problem. Standard reinforcement learning includes
an agent interacting with an environment E and receiving
a reward r every time step t. MDP can be denoted as the
tuple (S,A,P,R, γ), where S is the state space, A is the
action space, P : S × A 7→ S is the transition probability
function, and R is the reward function, γ ∈ (0, 1] is the
discount factor. The objective of reinforcement learning is
to optimize the policy π by maximizing the expected return
from the initial state. Therefore, the basic policy gradient can
be denoted as:

min
θ

∇θJ(πθ) = Eτ∼πθ
[
T∑

t=0

∇θ log πθ(at|st)
T∑

t′=t

R(st′ , at′ , st′+1)]

(1)
where τ = (s0, a0, s1, ..., sT+1) is the finite length trajec-
tories collect with policy πθ. The return of action can be
simplified to consider only the rewards after the agent takes
the action, not the rewards before the action. To reduce the
variance in the sample estimate for the policy gradient, the
advantage function is introduced as an alternative optimiza-
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Fig. 2. Overview of the proposed method. In the training phase, the policy π and the internal model f are trained simultaneously in the dynamics of
randomized environments. During adaptation, the internal model and the policy are both initialized with the pre-trained model. The policy then utilizes the
data from Dtest combined with Dgen generated by the internal model for adaptation.

tion objective.

∇θJ(πθ) = Eτ∼πθ [

T∑
t=0

∇θ log πθ(at|st)Aπ(st, at)] (2)

The advantage of an action, defined by Aπ(st, at) =
Qπ(st, at)− Vπ(st), describes how much better or worse it
is than other actions on average. Q and V represent the state-
action value and state value, respectively. The baseline policy
used in this work, Proximal Policy Optimization (PPO) [36],
is derived from Eq. 2.

IV. METHOD

The framework of our method is presented in Fig. 2. The
agent observes the robot state st from the environment and
feeds it to the actor to predict a control signal, which is a set
of parameters of Zero Moment Point (ZMP) [1] controller.
The ZMP controller then parses the control trajectory and
sends it back to the robot. After that, the agent will receive
a reward rt from the environment. In the learning phase,
we employ dynamic randomization to learn policies for
various robot dynamics and learn an internal model that
approximates the environment dynamics. In the adaptation
phase, the internal model is continued to be trained and used
to augment the state to generate virtual trajectories. Then
the virtual data is mixed with real interaction data to train
the policy. However, some bad augmentation data may be
harmful to policy training. Therefore, we further propose to
generate data in a discriminative manner for states.

A. Learning internal model

Learning a dynamics model through supervised learning
is more stable than learning the value function through
bootstrapping [24]. Thus transferring the dynamics model
is more feasible than transferring the policy directly. In this
work, we learn the environment dynamics through end-to-
end neural networks. A recurrent network is introduced to
capture the context of recent experiences. The intuition is
that the dynamics information underlying transitions can be
captured from interaction trajectories.

Learning a dynamic model that approximates the environ-
ment dynamics is the core of model-based reinforcement
learning. The proposed DIM consists of a transition estima-
tor, a reward estimator, and a "done" estimator, parameterized
by θϕ, θφ and θξ, respectively. As illustrated in Figure 3. The
transition module receives the state st, the action at, as well
as the latent ht encoded from the RNN network, to predict
the next state ŝt+1. It can be formulated as:

ŝt+1 = fϕ
θ (st, at, ht) (3)

The reward module estimates the state-action reward for
executing the action at at state st. Similarly, the reward
module receives the state st, the action at, and the latent
vector ht to predict the state-action reward r̂t, which can be
formulated as:

r̂t = fφ
θ (st, at, ht) (4)

A complete environment model should be interactive, that
is, given a policy, the agent can obtain complete rollouts by
interacting with the environment model. Therefore, in addi-
tion to the transition module and reward module mentioned
above, a "done" estimator is learned to predict whether the
trajectory is terminal after executing the action at at state st.

d̂t = fξ
θ (st, at, ht) (5)

where d̂t is the predicted "done" flag. The environment
model is trained with tuples (st, at, rt, st+1, dt) sampled
from experience data, which can be easily obtained through
interaction. We optimize the environment model by minimiz-
ing the following loss functions:

L(θϕ) = ||st+1 − fϕ
θ (st, at, ht)||2 (6)

L(θφ) = ||rt − fφ
θ (st, at, st+1)||2 (7)

L(θξ) = ||dt − fξ
θ (st, at, st+1)||2 (8)

With the environment model, for a given state st, the agent
has the ability to simulate the subsequent trajectory under
the current policy. In this work, the predicted trajectories are
mixed into real interaction data to improve policy learning,
which can be regarded as a kind of data augmentation.



Fig. 3. Illustration of the internal model. The internal model f accepts the
state st, action at and a latent vector ht at time step t to predict the next
state ŝt+1, reward rt and determine whether it is “done".

B. Accelerating adaptation with DIM

The internal model can be applied to augment the state,
which can then be used for planning or to generate more
transitions. The proposed method falls into the latter cate-
gory, focusing on leveraging the learned environment model
to generate a series of transitions that are close to the new
tasks domain to accelerate policy adaptation.
The DIM is first trained in the training task to obtain an ini-
tialized model. For new environments/tasks, with the context
encoder, the DIM can quickly adapt with few transitions.
This allows the agent to interact with the internal model
to obtain virtual transitions that are similar to the new
environment. Assuming that the agent receives the state st
and takes action at time step t, according to Equation (3), (4)
and (5), the internal model will predict the next state ŝt+1

and the corresponding reward r̂t, as well as the "done" flag.
The augmentation process can be repeated based on the new
predicted state st+1. The augmentation process at every time
step can be formulated as:

ŝt+k = fϕ
θ (ŝt+k−1, ât+k−1, ĥt+k−1)

r̂t+k = fφ
θ (ŝt+k, ât+k, ĥt+k)

d̂t+k = fξ
θ (ŝt+k, ât+k, ĥt+k)

(9)

where k is the augmentation depth. As the augmentation
depth increases, the errors will increase simultaneously.

C. State discriminator

Augmentation for all states is unreliable, because the
dynamic model may have inaccurate predictions for some
states. The inaccurate augmentation may drop the perfor-
mance of the agent. To alleviate this problem, we further
propose to discriminate the model reliability of the states.
Then we sample states with better model reliability with a
higher probability to perform state augmentation.
Specifically, we calculate the prediction error (MSE in this
work) ∥e(st)∥2 as the reliability criterion for each state st
in the buffer. The sampling probability is defined as:

pi = Softmax(−∥e(st)∥2)

Intuitively, a lower prediction error means the internal model
is more "familiar" with the state, and the model can generate
more accurate transitions in that state.

TABLE I
DEFINITION OF THE REWARD FUNCTIONS

Reward term formulation weight
Step reward rs ∥qt − qt−1∥2cosθ ws = 100.0
Effort reward re −

∑
τ2 we = 0.25

Orientation reward ro −
∑

(min(|αi|, 15)) wo = 0.05
Height reward rh −|ht − h0| wh = 20.0
Fall reward rf -50 if robot falls down else 0 wf = 1.0

Algorithm 1 DIM adaptation
Input: Initial policy:π;

Pre-train IM: fθ;
Augmentation depth k;
Data nums: N ;

Output: Adaptation policy: π
while epoch ≤ max_epoch do

Collect trajectories {τi} using π.
Train fθ with {τi} by Eq. 6.
For each trajectory τi calculate sampling probability:

Pi = Softmax(−∥e(st)∥2), st ∈ τi

Sample N states s ∼ Pi

Generate k-depth trajectories {τ̂} using fθ.
Update the policy π using {τ̂}

end while

V. EXPERIMENTAL SETUP

In this section, we present the experimental setup and
implementation details of the proposed framework. We first
describe the bipedal robot in Sec. V-A. We then introduce
the simulation environment and the definition of the tasks in
Sec. V-B. Finally, the evaluation metrics and training details
are elaborated in the V-C and Sec. V-D, respectively.

A. Robot setup

To verify the effectiveness of the proposed method, we
conduct our simulator on Gazebo and PyBullet to support
the training and adaptation validation of bipedal locomotion.
Robot. The bipedal robot contains 10 degrees of freedom
(DoF), and each leg has 5 DoF. They correspond to five
joints hip roll, hip pitch, knee, ankle roll, and ankle pitch.
The CoM is maintained at the center of the pelvis.
State and Action Space. The state consists of joint positions,
joint velocities, body angular velocity, and body angular
acceleration, which is a 20-dimension vector. The action is a
set of parameters of ZMP [1] controller 3, which contains the
gait length, the height of the feet raise, the amplitude of the
body swings (in x and z directions) and the gait period. The
ZMP controller outputs the planning trajectory to control the
robot at a frequency of 240 Hz, while the frequency of the
RL controller is 8Hz.
Reward function The reward functions employed in this
work are shown in Tab. I. The robot position at step t is
represented by qt ∈ R3. θ is the angle of the qt − qt−1

and the target direction d. τ in the effort reward is the joint

3https://github.com/ROBOTIS-GIT/ROBOTIS-OP3/
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Fig. 4. Adaptation training curves on 4 tasks. The solid line represents the
mean and the shadow represents the STD across 5 random seeds.

torque. αi in the orientation reward is the robot orientation
in the Euler angle. i represents the rotation direction, which
includes roll, pitch, and yaw. h0 in the height reward is the
desired height of the robot. Therefore, the reward function is
defined as the sum of these sub-rewards: rt = wsrs+were+
woro + whrh + wfrf .

B. Environments and Tasks

We build the bipedal robot simulator in PyBullet and
define 4 tasks to evaluate the adaptation performance of
different approaches, as shown in Figure 1. We randomize
the dynamics parameters and divide them into two dis-
joint groups, one for the training and the other for the
adaptation. The dynamics parameters include CoM, friction
coefficient, and damping coefficient. Moreover, we define
different walking velocities in the training and adaptation
environments to verify the task transfer ability of policy.
More implementation details are described below.
CoM. The CoM of the robot is randomized in the x-axis
and y-axis directions, respectively. Specifically, we change
the CoM with a random offset distance in these 2 direc-
tions, denoted by COMx and COMy . In implementation,
COMx ∈ [−3.0, 3.0] and COMy ∈ [−5.0, 5.0]. The unit
is m. Friction: The range of friction coefficient in training
is [0.2, 0.8], while [0.1, 0.2] in adaptation. Damping: The
damping of the ground, is set as [6, 12] in training and
[5, 6]∪ [12, 13] in adaptation. The unit is N/m. Velocity.The
walking velocity of the bipedal robot. The range of velocity
is [60, 75] in training and [75, 85] in adaptation. The unit is
cm/s. For all the tasks, there is no intersection between the
training and adaptation sets.

C. Evaluation Metrics

Since the objective of the RL agent is to maximize
cumulative reward, the average episode reward is used to
evaluate the performance of adaptation.

R =
1

N

T∑
t=0

r(st, at)

where N is the number of test episodes. We also introduce
success rates to compare the varying models. An episode
is considered a success if the robot can walk stable for 2
minutes and walk forward 5 meters from the starting point.
The success rate is calculated by:

SR =
X (step > L ∩ len > D)

N
× 100%

where X is the indicative function and L is the time step
threshold. len is the walking distance and the D is the
distance threshold.

D. Training details

Internal Model. The internal model consists of 3 fully
connected layers. The concatenating vector (ht, st, at) passes
through 3 fully connected layers of size (33, 300), (300, 300)
and (300, 22) to predict next state ŝt+1, reward r̂t and
“done" flag d̂t. The context encoder consists of a LSTM
[35] module. The input trajectory length and the latent size
of LSTM are 8 and 64, respectively. Then a fully connected
layer outputs the latent code to 8. The learning rate of
training is set as 1e− 3.
MFRL training. The policy and value network both contain
2 hidden layers of 64 units. The learning rate of policy and
value function are all set as 3e − 4. The batch size in our
experiment is set as 64.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

This section qualitatively and quantitatively analyzes the
adaptation performance of the proposed DIM with vanilla
PPO [36], pre-trained PPO, and DIM-random.

• Vanilla PPO is training the PPO policy from scratch in
adaptation environments.

• pretrained PPO is training PPO with a pre-trained
policy that is trained in the training environments.

• DIM is the proposed method. The internal model and
the policy are both pre-trained. In the adaptation phase,
DIM is employed to generate transitions to improve
adaptation efficiency.

• DIM-random is similar to DIM. The only difference
is that the pre-trained internal model is replaced with a
randomly initialized model. We consider this setting to
verify the effectiveness of the prior knowledge acquired
by the internal model on the training task.

A. Dynamics Transfer Results

The adaptation results are shown in Figure 1. Our method
significantly outperforms the baseline method in all tasks.
Especially for the velocity task, our method achieves a mean
reward of 928.89, while the vanilla PPO only gets 732.17.
It demonstrates that DIM generation is efficient to accelerate
the adaptation of RL agent.
It can be seen that vanilla PPO has poor performance in all
tasks, while the pre-trained PPO and DIM perform better.
This indicates that pre-training is essential for the agent to
gain task-relevant knowledge. It is also worth noting that
DIM-random achieves competitive results in CoM and Fric-
tion tasks. Although the random initialized internal model
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TABLE II
THE COMPARISON OF SUCCESS RATES ON 4 TASKS.

Friction Velocity Damping CoM
vanilla PPO 68% 18% 92% 81%
DIM-random 72% 20% 30% 32%
DIM w/o SD 80% 24% 93% 80%
DIM 81% 24% 98% 84%

may be imperfect, the proposed SD is helpful to reduce the
generation of inaccurate transitions. This prevents the policy
from being attacked by these transitions.

We also measure the success rates of different methods,
as shown in Tab. II. In practice, we calculate the success rate
by testing 100 episodes on each task using the best-trained
model. DIM yields a higher success rate than other methods,
which further proves the effectiveness of the proposed DIM.

B. Ablation studies

In this section, we conduct experiments to evaluate the im-
portance of the key components of our algorithm, including
We also validate the state discriminator, the prediction accu-
racy of the internal model, and the number of augmentation
transitions.
The prediction accuracy of the internal model. To verify
the performance of the internal model, we visualize the
predicted future trajectory (contains 50 predicted steps), as
shown in Fig. 5. The predicted transitions can be translated
to the robot poses, as shown in the first row of Fig. 5,
the shadow represents the predicted robot pose while the
solid represents the actual pose. The corresponding joint
trajectories are also shown in Fig. 5. For brevity, we have
chosen only three joints. It shows that the trajectory pre-
diction of the internal model is accurate within the first 10
steps. As augmentation depth increases, the prediction error
will gradually increase. The effect of the augmentation
ratio. To evaluate the number of augmentation transitions,
we set different ratios of the augmentation and evaluate the
episodic returns. The results are shown in Tab. III. It can be
seen that the best results on 3 tasks are obtained when the
ratio is set as 1. We believe that too much augmentation may
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Fig. 6. Adaptation training curves for Gazebo to PyBullet transfer. We
report the mean episode returns across 5 random seeds.

TABLE III
THE REWARD FOR DIFFERENT AUGMENTATION RATIOS ON FOUR TASKS.

tasks
Ratio Velocity Damping Friction CoM
0× 1132 5710 4201 4075
0.5× 1467 6058 4257 4449
1× 1283 6070 4849 5208
2× 1038 5676 4558 4868
4× 1431 5772 4239 4859

lead to a lot of similar transitions, which are redundancy for
the policy.

C. Gazebo to PyBullet

To evaluate the generalization of the DIM model. We also
build a robot using Gazebo simulation to validate the transfer
performance across different simulators. The state and action
space are consistent with the PyBullet simulator. The biggest
difference is that Gazebo uses the ODE physics engine, while
PyBullet uses the Bullet.
Results. Figure 6 illustrates the effectiveness of the proposed
method across different simulation environments. The large
simulation gap makes policy trained on the gazebo suffer
from catastrophic failure when directly adapting to the Py-
Bullet environment. The policy initialized by the pre-train
model even underperforms the randomly initialized policy.
This issue also occurs in [22], [23]. Thus, we directly use
the randomly initialized policy in the adaptation phase.

VII. CONCLUSIONS

We presented an adaptable internal model equipped with
a state discriminator to accelerate the policy adaptation for
a bipedal robot. In this work, we propose Discriminative
Internal Model (DIM), to accelerate the adaption efficiency
of MFRL agents and improve the generalization ability in
various dynamics environments. To avoid bad augmentation,
we further propose a state discriminator that evaluates the
reliability of the internal model in a state to determine the
amount of augmentation data at that state. We demonstrate
the adaptation performance on the bipedal robot with various
dynamics parameters. Experimental results demonstrate that
the DIM enables the agents to rapidly adapt across different
dynamics and tasks. Our future work will focus on utilizing
the DIM for sim-to-real adaptation.
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