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Abstract— In the present work, molecular docking of a data 

set of decoys and ligands against an acetylcholinesterase protein 

PDB ID (5HFA) was studied, using Autodock4 and Vina 

software. A minimal difference was found between the results of 

decoys and active molecules with both programs, indicating that 

positive and false positive results are difficult to distinguish. The 

effect of the initial seed and exhaustivity was evaluated, showing 

that the initial settings can be manipulated and affect the results. 

Docking tests are cost-effective and widely used. In this work, 

deficiencies inherent to biological work are exposed in which the 

software could be improved for best performance. 
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I. INTRODUCTION  

 

Virtual screening (VS) is a tool that allows filtering of 

groups of substances to select those that have the best 

characteristics for the function of interest [1]. Docking can be 

used as a virtual screening tool, considering that compounds 

with higher affinity energy will present higher bioactivity 

(fig.1) [2]. Predictions based on simulations are the result of 

applying physical formulas to predict the behavior of the 

protein and the ligand, the set of formulas is called the force 

field [3]. The simulations have shown good predictive power 

and are widely used in the pharmaceutical industry for the 

design of new molecules with therapeutic potential [4]. 

 

VS technique has been used to scan the FDA database 

containing already approved drugs that can be repositioned or 

used for other diseases, drug repositioning has been used 

before, the clear example of this is sildenafil that had 

originally been it was proposed to treat pulmonary 

hypertension and reused for erectile dysfunction [5]. During 

the recent pandemic, some virtual screening studies have 

been conducted to find a drug in the FDA database to 

repurpose an approved drug that can serve as an antiviral 

against the virus and its main spike protein. A study found a 

set of 20 promising molecules including, among others, a 

broad spectrum antiviral (ribavirin), an anti-hepatitis B drug 

(telbivudine), and some vitamins, all of them safe and whose 

effects are already known [6] 

An advantage of VS is that the molecules are already 

approved, and their side effects are known, so the approval 

process for reuse is faster. They are safe substances with low 

or no toxicity, the risk compared to the reward is greater. On 

the other hand, the development of new molecules is 

expensive and time consuming, something that only large 

pharmaceutical companies can afford. It is estimated that the 

pharmaceutical industry takes between 12 to 15 years to 

develop a new drug, considering from its design to its 

commercialization to the public, all this has an approximate 

cost of 1,200 million dollars  [5], [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. THEORETICAL BACKGROUND 

 

Autodock4 and Autodock Vina are two widely used open-

access tools for conducting interaction tests, each having 

been cited more than 6000 times in the last ten years. In-silico 

studies are mainly to generate hypotheses and conduct 

directed and better focused experimental studies or to verify 

and explain experimental findings [8]. The difference 

Figure 1. Virtual screening schematic 

representation 
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between Autodock4 and Vina software is the scoring function, 

in Autodock4 it is based on a semi-empirical calculation that 

involves the Coulomb potential, Lennard-Jones potential, 

desolvation volume, and the number of rotatable bonds [9]. 

On the other hand, the VINA score function is empirical, it 

uses Gaussian steric interactions, hydrogen bonds, rotatable 

bonds, repulsion, and torsion forces [10]. 
 
Its first version of Autodock was released in 1990, 

currently Autodock4 (2009) is a tool that uses a grid-based 

method to allow rapid evaluation of binding energy of trial 

conformations of ligands against a target protein. The target 

protein is embedded in a grid, a probe atom is then 

sequentially placed at each grid point and the interaction 

energy between the probe and the target protein is computed, 

the value is stored on the grid. This grid is then used as a 

lookup table during docking simulation [9]. 

 

Autodock4 uses a Lamarckian genetic algorithm, a 

population of trial conformations of the ligand is created and 

competes in a biological evolution manner, ultimately 

selecting the best binding energy individuals (negative 

affinity energy). Also, the software uses a semiempirical free 

energy force field to predict binding energies, based on a 

thermodynamic model with intramolecular energies in bound 

and unbound states and a charge-based desolvation method 

calibrated with a set of 188 protein-ligand experimentally 

well-known complexes with errors of 2-3 kcal/mol in 

prediction. Other considerations can be considered like 

receptor flexibility and covalent docking. 

 

Later, AutoDock Vina was released in 2010 with 

improvements in accuracy and speed-up in calculations. The 

new method approach is more of “machine learning” than 

physics-based nature, justifying performance on test 

problems more than theoretical considerations following 

some strong approximating assumptions as described by its 

creators [10].  

 

 

III. METODOLOGY 

A. Choose of ligands 

 
For this work, two databases were used: First, a set of 

molecules, 644 active compounds and 664 decoys were 
chosen from the DUD-e database [11], which are already 
experimentally tested compounds for the bioactivity of 
acetylcholinesterase. The second group was 67 AChE 
inhibitors and 67 substrates, these were obtained from 
CHEMBL data base [12]. Compounds were converted from 
SDF to PDBQT format using OpenBabel software with which 
energy minimization of the molecules was also performed 
[13]. 

B. Preparation of the protein structure 

 
The enzyme acetylcholinestase was used since its structure 

and operation are well known. The structure of the 5HFA was 
chosen and downloaded from the PDB database. To perform 
a virtual screening based on blind coupling, the water 
molecules were removed from the crystallographic structure 

of the discharged protein, as well as the ligands present, this 
was done using the USFC-Chimera software, the file was 
saved in PDB format. Subsequently, the structure was 
processed using AutoDock Tools, the polar hydrogens were 
added, the Kollman charges were fused and finally the non-
polar hydrogens. The structure was saved in PDBQT format. 

 

C. Docking process 

 
Autodock Vina and Autodock4 were used to perform 

virtual screening of ligands against the 5HFA protein. A script 
was created to automate the process using bash scripting, only 
one conformation was chosen, the best energy result in 
kcal/mol units with exhaustiveness of 8, the sampling box was 
set to cover all the protein since docking was performed blind. 
In the case of Autodock4, the same files were used, however 
the docking script configuration was done through the 
Raccoon software support. Additional tests were performed 
using Autodock VINA to analyze different configurations 
available in the software. Two types of tests were carried out, 
based on the type of starting seed, fine seed (27527408) and 
random seed. Tests were also made to evaluate the 
exhaustivity, that is, the number of evaluations that are carried 
out in the conformational search, 8, 16 and 32 of exhaustivity 
were used. The calculations were performed on a desktop PC 
with a 4-core i5 processor and 12 GB of RAM running Ubuntu 
20.04 LTS operating system.   

 

IV. RESULTS 

 

The predictions show that the affinity energy calculated with 

Autodock4 is three units greater than the energy calculated 

with Vina (fig. 2). This means a limitation to do comparisons 

between the predictions of different software's. In both cases, 

there was no difference between the prediction of active 

substances and the negative controls (table II). So, in both 

software’s it is not easy to make a distinction between an 

 

Fig. 2.-Binding energy calculated with Autodock4 and Autodock Vina using 

a database of active and decoy compounds against the acetylcholinesterase 

enzyme. N = 664, a single test of each compound with exhaustiveness of 8 in 

Vina and 2,500,000 in Auto 

 

 

 



 

 

TABLE II 

Type of compound AutoDock Vina 

(kcal/mol) 

AutoDock4 

(kcal/mol) 

Decoy -7.58 ± 1.01 -10.87 ± 1.83 

Active -7.96 ± 1.15 -11.10 ± 2.01 

Table 1.-Results of affinity energy obtained with AutoDock Vina and 

AutoDock4 using the same data set of 664 active and 664 decoy compounds 

against Acetylcholinesterase enzyme PDB ID (5HFA). 

 

TABLE III 

Measure of AutoDock Vina Auto Dock4 
Affinity Active Decoy Active Decoy 

Mean* -7.968 -7.587 -11.108 -10.878 
Std. Deviation 1.154 1.019 2.015 1.835 

Skewness -1.210 -0-854 0.135 0.028 
Std. Error of skewness 0.095 0.095 0.095 0.095 

Minimum* -13.500 -12.900 -15.933 -16.486 
Maximum* -4.600 -4.400 -4.954 -4.972 

                                                                                                              *Units of affinity kcal/mol 

Table 2.-Among the descriptive data, the difference between the skewness of 

the results. The skewness is a measure of the normality of the measurements, 

it can be observed that the Autodock4 results have a normal distribution 

(asymmetry 0.5 to 0.5), while the Vina results have a moderate obliquity in 

the decoys (<-0.5) and are large on active compounds (<-1). 
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Fig. 3. Binding energy calculated with Autodock Vina using a database of 

kwon substrates (n =67) and inhibitors (n = 66) against the 

acetylcholinesterase enzyme. A single test of each compound different 

exhaustiveness (8, 16, 32) and seed was fixed (Fix) (seed = 27527408) or 

random (Rand). * means statistical difference in each group, statistical 

probe ANOVA one way, Student Newman Keuls post hoc.  

active and a non-active substance only considering the result 

of the affinity energy. In both cases, the decoys had higher 

affinity energy (considering that they are negative values), 

there is a difference between both groups, although it is small, 

and it is not possible to distinguish between active and non-

active substances. A higher standard deviation can also be 

observed in the results obtained from Autodock4, which 

represents a greater range of variability between the 

predictions (table III). 

 

The results of the variations in the Autodock VINA settings 

showed a significant change between the groups. There is a 

statistical difference between the results of tests with 

inhibitors with fixed seed and an exhaustivity of 8, with 

respect to the completeness in random seed at 16 exhaustivity 

and 32, with both seed configurations. The same occurs with 

the exhaustivity of 8 and the random seed, and in 32 with both 

seed configurations. In the case of substrates, the exhaustivity 

of 8 with respect to that of 32 is where the greatest statistical 

differences can be observed (p < 0.05). When all results are 

averaged only to compare inhibitors versus substrates, no 

significant differences are observed, there is no way to 

distinguish AChE agonist substrates from antagonist 

inhibitors. 
 

 
 
Fig. 4. Binding energy between acetylcholinesterase enzyme and known 

ligands, calculated with Autodock Vina and Autodock4 using a database of 

kwon substrates (n =67) and inhibitors (n = 66). Blind docking with 

exaustity of 8 and random seed. 

DISCUSSION 

 

Decoys represent a problem for computational prediction 

studies based on coupling assays, since they represent false 

positives that show high affinity energy and in experimental 

tests, they do not have good activity. False positives represent 

economic and time wasters [14]. In this study, it is shown that 

the active compounds and decoys cannot be distinguished 

with Autodock4 or Autodock Vina, although a slight decrease 

in the affinity energy was found. One of the relevant 

differences in the results is that the Autodock4 predictions 

have lower affinity energy, but the proportionality between 

compounds is maintained using the different computer 

programs. The results obtained must not be comparable 

between different software, they must have points of 

comparison calculated with the same software. 

 

On the other hand, it was shown that the range of results 

obtained with Autodock4 is wider than those obtained with 

Vina. Having a wider range makes it possible to distinguish 

the best ligands from the rest of the compounds with greater 

security. Also, the normal distribution measured by the 

degree of skewness shows that Autodock4 software has the 

advantage of separating compounds into larger intervals and 

distinguishing substances. Autodock4 has computational 

advantages over Vina, although Vina is faster. 

 

The results of the configuration variations showed that they 

can alter the values found, by altering the seed and the 

exhaustivity, the virtual screening results can be manipulated, 

increasing the risk of false positives and negatives. The most 

common configuration is to have a random seed and an 

exhaustiveness of 8. However, as found in this study, there is 

no way to distinguish between active compounds and decoys, 

and between active compounds there is no way to distinguish 

between substrates (agonists) and inhibitors (antagonists). It 



is necessary to carry out a more in-depth analysis or 

implement new algorithms that make it possible to 

distinguish between the type of activity of the ligands. This 

study exposes some of the limitations on molecular docking 

software as a virtual screening tool. New approaches that use 

machine learning could improve these deficiencies [14]. 

 

 

CONCLUSION 

 

Autodock4 software makes predictions with lower affinity 

energy than Autodock Vina. The distribution of the results in 

a wider interval and with a normal distribution in Autodock4 

with respect to Autodock VINA. Based on the resulting 

affinity energy alone, there is no way to distinguish between 

active compounds and decoys, and agonist compounds 

cannot be distinguished from antagonists. Affinity energy is 

a measure that should be taken with caution in its 

interpretation [15].   
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