
EasyChair Preprint
№ 11847

RUFRON: a Library for Generation of Rules
from Ontology

Olegs Verhodubs

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 22, 2024

1

RUFRON: A library for Generation of Rules from Ontology

Olegs Verhodubs

oleg.verhodub@inbox.lv

Abstract. Ontology is a source to generate rules. Rules are one of the possible ways to display knowledge, and they

are needed for knowledge-based systems and expert systems to function. The library Rufron is described in this

paper, and it is designed as a library for programms to generate rules from the ontology and then to inference based

on these rules.

Keywords: Ontology, Rules, Rules from Ontology, RUFRON

RUFRON available at: https://github.com/papillion80/RUFRON

I. Introduction

The quality of human life is increasing year by year, but this phenomenon has its costs. More and

more trained specialists are needed to ensure life at the required level of quality. This applies to

such different spheres of life as education, medicine, law, maintenance of various equipment -

from household to industrial. Training professionals requires significant time and financial

investment, so the idea of the ability to replicate the abilities of professionals in various fields

has captured people for a very long time. With the advent of computers and Artificial

Intelligence applications such as expert systems, this became possible. It could not be said that

this became possible in all areas where we would like it, but in many very significant areas, it

was possible. Advances in the development of expert systems were marked by such systems as

MYCIN, INTERNIST, DENDRAL, XCON and many others [1]. Formally, an expert system is a

computer system emulating the decision-making ability of a human expert [2]. But to put it

simply, an expert system is a computer program that can completely or partially replace a human

expert in a certain field. There are several classifications of expert systems, but classification

according to the method of storing or in other words representing knowledge is fundamental. In

turn, rule-based expert systems are expert systems in which the knowledge is represented by

production rules. A production rule, or simply a rule, consists of an IF part (a condition or

premise) and a THEN part (conclusion). IF condition THEN conclusion. Rules are a universal

way of storing knowledge in the sense that they can be generated from various sources of

information. The ability to generate rules from OWL (Web Ontology Language) ontologies [3],

[4] is the most promising as the Web undergoes a transformation and the Web turns into the

Semantic Web before our eyes. One of the facets of this transformation means filling the Web

with ontologies. Ontologies is the way to describe the structure of some subject area without any

restrictions that is why, having an ontology and the ability to generate rules from it, we

immediately get the opportunity to extract the laws by which this subject area functions.

Analyzing the trends in the development of the Web, it can be assumed that the ability to

generate rules from an ever-increasing number of ontologies will be required by a large number

of applications, so a tool is needed that will facilitate the development of future applications.

This tool is a library with a set of functions that make it possible to generate rules from

ontologies. This library was developed independently at my own expense and in my free time

while working on the Semantic Web Expert System [5], now we are giving this library a name

mailto:oleg.verhodub@inbox.lv
https://github.com/papillion80/RUFRON

2

and making it freely available. The name of this library is RUFRON, which is short for

RUlesFRomONtology.

The RUFRON library is available at https://github.com/papillion80/RUFRON

This paper is organized into several sections. The next section describes OWL constructs and

types of rules that can be generated from these constructs. The third section presents the

requirements and the architecture of the RUFRON library.

II. Theoretical basis for rule generation

OWL provides a means to describe ontologies. An ontology is a set of descriptions, where the

main components are classes, properties, relations and individuals. More formally, an ontology is

defined as a structure [6]:

O = <C, T, R, A, I, V>, (1)

where there are ontology (O), concepts or classes (C), types (T), relations (R), attributes (A),

instances (I), values (V).

Types, instances and values are not neccessary in our task that is why they will not be mentioned

further. Our task is to describe a library that will make it possible to generate rules from the

ontology and only classes, attributes and relations are required. This truncated set is enough to

generate a decent number of rules that can be divided into several categories:

 identifying rules,

 descriptive rules.

Identifying rules distinguish an object from many other objects and descriptive rules connect

new information with already known objects. In total, regardless of the category to which the

rule belongs, there are 15 different types of rules described [3], [4], although there may be more

types of rules. Here the initial version of the RUFRON programming library is described here,

and it implements only four types of rules being generated from the OWL ontology. Let us list

these types of rules:

1. identifying an object based on the known properties [3]. For example, there is a description

of the class “Arrhythmia” with three properties P1, P2, P3 in the ontology:

<owl:Class rdf:ID="#Arrhythmia "/>

<owl:DatatypeProperty rdf:ID="P1">

<rdfs:domain rdf:resource="#Arrhythmia "/>

<rdfs:range rdf:resource="xs:string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="P2">

<rdfs:domain rdf:resource="#Arrhythmia"/>

<rdfs:range rdf:resource="xs:string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="P3">

<rdfs:domain rdf:resource="#Arrhythmia"/>

3

<rdfs:range rdf:resource="xs:string"/>

</owl:DatatypeProperty>

</owl:Class>

Visually it can be demonstrated like this (Fig.1.):

Fig.1. The “Arrhythmia” class with three properties.

It is possible to generate the following rule:

IF P1 and P2 and P3 THEN Arrhythmia (1)

2. identifying an object based on class equivalence [3]. For example, there are two equivalent

classes “Arrhythmia” and “A”:

<owl:Class rdf:ID="A">

<owl:equivalentClass>

<owl:Class rdf:ID="Arrhythmia"/>

</owl:equivalentClass>

</owl:Class>

--------------------------- OR ------------------------

<owl:Class rdf:ID="A">

<owl:sameAs rdf:resource="# Arrhythmia"/>

</owl:Class>

Visually it can be demonstrated like this (Fig.2.):

Fig.2. Two equivalent classes “Arrhythmia” and “A”.

It is possible to generate the following rules:

IF A equivalent Arrhythmia THEN P1, P2, P3 ∈ A (2)

IF P1 and P2 and P3 THEN A (3)

3. complemention with data, exploiting relation. For example, there are “Son” and “Father”

classes and also “hasParent” relation between these two classes:

<owl:ObjectProperty rdf:ID="hasParent">

<rdfs:domain rdf:resource="#Son"/>

4

<rdfs:range rdf:resource="#Father"/>

</owl:ObjectProperty>

Visually it can be demonstrated like this (Fig.3.):

Fig.3. Two classes and a relation.

It is possible to generate the following rules:

IF Son THEN hasParent Father (4)

4. object identification based on part-whole relation. For example, there is a class “Heart” that

is the part of class “Organism” (Fig.4):

<owl:Class rdf:ID="Heart">

<rdfs:subClassOf rdf:resource="#Organism"/>

</owl:Class>

--------------------- OR ----------------------

<owl:Class rdf:ID="Heart">

<rdfs:subClassOf>

<owl:Class rdf:ID="Organism"/>

</rdfs:subClassOf>

</owl:Class>

----------------------- OR ----------------------

<owl:Class rdf:ID="Heart">

<rdfs:subClassOf>

<owl:Class rdf:about="#Organism"/>

</rdfs:subClassOf>

</owl:Class>

Visually it can be demonstrated like this (Fig.4.):

Fig. 4. Class “Heart” is part of class “Organism”.

It is possible to generate the following rule:

IF Heart and “part of” THEN Organism (5)

5. not belonging to the object. For example, there is a class “Heart” and this class does not

belong to class “Head”:

5

<owl:Class rdf:ID="Head"/>

<owl:Class rdf:ID="Heart">

<owl:complementOf rdf:resource="#Head"/>

</owl:Class>

Visually it can be demonstrated like this (Fig.5.):

Fig. 5. Class “Heart” is not class “Head”.

It is possible to generate the following rule:

IF Heart THEN not Head (6)

The mentioned types of rules are sufficient for stable logical reasoning. Now the architecture of

the library is being described.

III. Architecture

The RUFRON is a library for generation of rules from the ontology. Rules from an ontology are

being generated by searching for typical code fragments in the OWL ontology and subsequent

formation of a rule in the form IF... THEN... in accordance with the data from the OWL code

fragments. Processing of code fragments in OWL is carried out using Apache Jena framework

[7] and Java programming language. Thus, RUFRON needs Java and Apache Jena.

RUFRON consists of three classes: Matrix, SetMatrix and Rufron. The class Matrix is designed

to work with a matrix. It has the low-level methods to add rows and columns to the matrix, to set

some value to the certain cell of the matrix and also several methods to get concept name, type

and location based on some property. The work with a matrix is necessary, because generated

rules are stored in the form of matrix. The Matrix class has the following methods (Table I):

TABLE I. Methods of class Matrix.

Method specification Purpose

public String get(int i, int j) gets relation name

public void set(int i, int j, String value) sets relation name

void addRowCol(String concept, String concType) adds new relation and its type

int getConceptNumber(String concName) returns concept index

int getConceptNumberLast(String concName) gets concept index

String getConceptName(int i) returns concept name

String getConceptType(int i) returns concept type

void setConceptType(int i, String concType) sets concept type

int getLinkNumber(int i) returns relation quantity of concept

6

void refine() corrects names (delete indexes to concepts and _)

void delete(int ind) deletes concept by index

int duplicate(String concept_name) detects if concept is added to matrix

 Each rule is a set of ontology components, where unused components have a “0” marker and

used ontology components have the markers, which are divided in two categories [8]:

 Markers of rule conditions,

 Markers of rule results.

Markers of rule conditions are the following: CAND/ COR/ CXOR/ CNOT – logical AND/ OR/

XOR/ NOT for conditions; markers of rule results are the following: RAND/ ROR/ RXOR/

RNOT – logical AND/ OR/ XOR/ NOT for results. [8]

For example, there are seven components (concepts, links, properties), which are obtained from

one ontology. Hence, three rules are described (Table II):

TABLE II. Matrix of rules.

The following rules are code in the Table II:

IF Component1 AND Component3 THEN Component6 (7)

IF Component4 THEN Component7 (8)

IF Component2 THEN NOT Component7 (9)

The class SetMatrix is designed to fill the matrix with ontology data: classes, properties, links.

This class realises such methods (Table III):

TABLE III. Methods of class SetMatrix.

Method specification Purpose

Matrix getRootClass(OntModel mod, Matrix matrix) finds a root class

Iterator getAllClasses(OntModel mod) iterator of classes

void getSubClass(OntClass rootcls, Matrix matrix) finds all sub classes

void getSynonClass1(OntModel mod, Matrix matrix, Matrix matrix1, Matrix matrix2) finds equivalent classes

void getSameAsClass1(OntModel mod, Matrix matrix, Matrix matrix1, Matrix matrix2) finds equivalent classes

void getObjectProperty1(OntModel mod, Matrix matrix, Matrix matrix1) finds relations between classes

void getDatatypeProperty1(OntModel mod, Matrix matrix, Matrix matrix1) finds class attributes

void getComplementClass(OntModel mod, Matrix matrix, Matrix matrix1) finds nonequivalent classes

7

The class Rufron is the main class in this programming library. It is this class that must be

connected to the program that will generate rules from the OWL ontology, and the classes

Matrix and SetMatrix are auxiliary. The class Rufron is designed to connect ontology and also to

generate all types of rules from the ontology in its own matrix. For now, the class Rufron

consists of only one method:

void generateRulesFromOntology(String ont) (10)

This method takes the ontology name and location (String ont) and generates all rules into

matrices that are declared inside this method. This is not the ideal construction, however, there is

no need to use the programming library on an industrial scale. Now let us describe the

perspective of the library RUFRON.

 IV. Future work

The described library had been developed during work on the Semantic Web Expert System [5].

The Semantic Web Expert System is an expert system that uses the ontologies from the Web to

generate rules and to fill the knowledge base with generated rules. Then, a user can exploit the

Semantic Web Expert System, filled with generated rules, to obtain an expert opinion on an issue

of interest. If you use this library only for this purpose (Semantic Web Expert System), then even

in this case it can be improved. There are a lot more types of rules that can be generated from the

ontology than realized in Rufron. At this moment only types of rules published in [3] are

realized, but there also are other types of rules being generated from ontology that was pullished

in [4] and have not realized in code yet. And these are not all possible improvements. For

example, it is possible it would be more effective to store generated rules in other data structures

(not in matrices) and these data structures can situate in other places. Further, it would be

possible to untie this programming library from Apache Jena, thus providing this library with

another degree of freedom.

It is much more interesting to consider promising growth points for this library. Most of the

growth points being viewed are related to the possible expansion of this library into other

promising projects. The first point of growth is associated with the promising ability to output

rules in various syntactic formats. For example, the classic rule format in the form of

“IF..THEN” can be replaced with the rule format used in Apache Jena [9]:

[rule1: (?a eg:p ?b) (?b eg:p ?c) -> (?a eg:p ?c)] (11)

Of course, in the future, other formats for presenting rules may be needed, too. And this has to be

reflected in RUFRON.

The second groth point is associated with the ability to generate rules not only from ontology,

but also from other sources. It is already clear that rules can be generated from a relational

database structure [10]. An even more exciting prospect is the ability to generate rules from raw

text [11], [12]. That is not all: scientific intuition suggests that rules can crystallize from other

information sources. And all these potential possibilities should, of course, be implemented in

the Rufron.

Acknowledgments

This paper and the code were created solely at the expense of the author and using the author’s computer.

8

References

[1] Peter J.F. Lucas & Linda C. van der Gaag, Principles of Expert Systems, Amsterdam, 1991

[2] Jackson Peter, Introduction To Expert Systems (3 ed.). Addison Wesley, 1998

[3] Verhodubs Olegs, Evolution of ontology potential for generation of rules, 2012.

[4] Verhodubs Olegs, Ontology as a source for rule generation, 2014.

[5] Verhodubs Olegs, Towards the Semantic Web Expert System, 2011.

[6] Davies John, Struder Rudi, Warren Paul, Semantic Web Technologies, 2006.

[7] Apache Jena. Available online: jena.apache.org

[8] Verhodubs Olegs, Grundspenkis Janis, Algorithm of Ontology Transformation to Concept Map for Usage in Semantic Web

Expert System, 2013

[9] Reasoners and rule engines: Jena inference support. Available online:

https://jena.apache.org/documentation/inference/#reasonerAPI

[10] Verhodubs Olegs, Generation of Rules from the Relational Database Structure, 2023.

[11] Verhodubs Olegs, Experiments of Rule Extraction from Raw Text, 2021.

[12] Verhodubs Olegs, Rule Mining from Raw Text, 2021.

https://jena.apache.org/documentation/inference/#reasonerAPI

