
EasyChair Preprint
№ 9432

Topology Planning in Swarm Production System:
Framework and Optimization

Akshay Avhad, Casper Schou and Ole Madsen

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 8, 2022



Topology Planning In Swarm Production
System: Framework And Optimization

Akshay Avhad1 Casper Schou1 and Ole Madsen1

Department of Materials and Production
Aalborg University, Fibigerstræde 16, 9220 Aalborg East

akshayra@mp.aau.dk

Abstract. A Swarm Production System (SPS) aims to be an agile and
resilient Reconfigurable manufacturing system (RMS) paradigm that in-
corporates mobile workstations and transport robots on the factory pro-
duction floor. This paper primarily focuses on SPS’s initial but recurring
planning stage termed topology planning, which dynamically changes
throughout the production runtime with spatially adaptive workstations
and transporters handled exclusively by a Topology Manager (TM). TM
is essential to multi-variant production with the optimal positioning of
the workstations and provides a topology that optimizes the traffic flow
for the product carrier robots. TM is a bridge to enable SPS to inte-
grate with general planning and scheduling systems like ERP and MES
and is comprised of a Topology Planner (TP) that evaluates the ideal
configuration of on factory floor for a batch of product mix and a Recon-
figuration Decision System (RDS) that decides on applying the estimated
new topology during the batch changeover. The paper proposes a frame-
work for the TM to identify its essential functionalities, responsibilities
and working principle in a swarm production system. The paper also
describes a grid-based heuristic approach applicable to two-dimensional
spatial problems to reduce the complexity of the NP-hard problem. The
paper focuses on a framework to estimate a reconfigurable shop floor lay-
out with a Force-directed Graph-theory algorithm. A stochastic statisti-
cal model evaluates the performance of the optimal topology for through-
put and makespan.

Keywords: Swarm Production System, RMS, Topology Manager, Force-
directed, Statistical model

1 Introduction

The concept of Swarm Production System (SPS) proposed in [1] is a more flexible
production flow concept compared to the known manufacturing paradigms like
Assembly line and Matrix production. In an SPS, the workstations and product
conveyances between stations are mobile entities, which can be placed in any lo-
cation suitably. The main objective is to improve responsiveness to the market’s
need for producing batches of different of product variants (PV). Each PV has
an optimal workstation layout on the shop floor, allowing cost-efficient volume



2 Akshay Avhad et al.

production. The cost for producing a PV largely depends on resource allocation
of workstations and part carrying robots and the cumulative inter-workstations
travel length. The efficient SPS planning is pivoted on optimal travel cost in a
shop floor layout as resource allocation is a task for ERP and MES enterprise
systems. The scope of any production system spans Planning, Scheduling and
Control; it applies to SPS too.

The planning stage in a production system starts with identifying resources
such as machines, actuators, sensors, and workforce for the assembly operation.
An assembly or process workstation is an entity that hosts most of these re-
sources as a unit, termed a Workstation robot [WR] in SPS. Every WR has
links to other WRs; a chain of these links forms sequences that enables a PV
production. A link indicates a direction of material flow carried by a product
carrying Transfer Robot [TR]. In the scope of an SPS, a WR can have mul-
tiple linkages depending on the number of PV in production, forming a graph
structure with x and y positions for the node WR and edges representing the
linkages between WRs. These graphs are a topological structure that enables
SPS to produce a given set of PVs in a batch with efficiency in process exe-
cution. Each batch has an optimal topology. The optimal topology mandates
time efficiency in batch production with better throughput and cycle time. The
topology also lays a foundation for subsequent scheduling and control activity
in SPS with enumeration and task allocations for TRs in sequential assembly
operation for a PV. Identifying optimal positions for every WR in the topology
is a combinatorial NP-hard problem with factorial time complexity. Therefore, a
multi-step optimisation is proposed in the topology estimation problem in SPS.
As shown in the figure 1, a Topology Manager (TM) handles the planning stage
of identifying, estimating, and optimising the topology in SPS. External ERP
and MES systems provide high-level planning and scheduling information essen-
tial to the TM’s initialisation. Furthermore, the SPS contains a Swarm manager,
which executes process level tasks on WRs and TRs.

This paper presents a framework for TM to orchestrate the topology plan-
ning, initiating the production process with the transfer of batch information
from ERP and MES in the factory and ending with a local optimum topology
for production.

2 State of the Art

Operations research has extensively studied the factory layout problem (FLP)
associated with optimally localising manufacturing facilities to reduce cost. The
nature of the problem of SPS topology planning has similarities with the FLP
with the placement of WR on a shop floor.

2.1 FLP in Changeable Manufacturing

SPS is an applied case of conceptual RMS with a practical production philos-
ophy involving autonomous WR and TR entities on the shop floor. The most
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Fig. 1: SPS system level context[1]

practical research questions in the reconfigurable scenario is around addressing
adaptability and scalability of transportation within production and deploying
the dynamic layout over two dimensional plane [2]. Rosenblatt [3] first addressed
the problem of dynamic plant layout (DLP). Heuristic-based solutions and dy-
namic programming techniques are proposed in [3], and [4] for DLP. Kusiak
and Heragu [5] found that heuristics yield near-optimal, computational light
solutions relevant to non-uniform spatial vacancies in Flexible Manufacturing
Systems (FMS). A hybrid genetic algorithm has been implemented in [6] to op-
timise continuously change layout requirements in RMS. The effectiveness of this
algorithm prevails over the standard genetic algorithms due to its broader search
spaces capability. Metaheuristic techniques combined with deterministic ML al-
gorithms are efficient in solving combinatiorial optimization problem in Change-
able Manufacturing Systems [7]. The selection of optimal factory configuration
is critical to quantifying machines, equipment, robots, and task assignments to
all these entities. Line-less Mobile Assembly System (LMAS) [8], is a flexible
production paradigm, incorporates a statistical assessment model created in [9]
for the early planning stage; in comparison to a discrete event simulation (DES)
model that is cumbersome to build in the absence of a suitable scheduler.A cost
and time-driven dual approach [10] is proposed for task and location assignment
in the planning of LMAS. Therefore, dividing shop floor area into a grid with
uniform squares to reduce the time and computational complexities of estimating
discrete x and y parameters instead of continuous ones.

2.2 Optimization methods in FLP

Multiple FLP design problems in [11] and [12] are addressed with Mixed Integer
Linear Programming (MILP) optimization methods. In [13] a branch and bound
approach coupled with MILP is ineffective in solving a large-size problem, while
metaheuristic algorithms fare better in comparison. MILP-based solvers shown
to have exponential time complexity from medium to large grids impart low
practicality in real-world FLP problems in [14]. Hybrid metaheuristic-based ex-
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periments performed in [15] for Capacity-based FLP optimally locate factories
with the demand such that overall cost due to operation and product trans-
portation is minimal. Sets of metaheuristic solutions like Simulated Annealing
(SA) and Genetic Algorithm (GA) are applied to the dynamic reconfiguration
of factories in [16][17], and [18]. Quadratic assignment problem (QAP) in [19]
and [20] addresses peculiar FLP where the cost is cumulative of distances be-
tween facilities and number flows between them. Various QAPs have been used
in cross-disciplinary planning facilities for hospitals, supermarkets, and also in
precision demanding electronic circuits design are presented in [19] [20] and [21].

2.3 Optimization with Graph theory

A two-stage cost optimisation model in [22] applies graph theory for evaluating
the initial solution based on shortest path constraints followed by a selection of
more optimal configurations from the first stage. The solution to FLP discussed
in [23] and [24] could be modelled as an optimal location solution for vertices of
a graph on 2D space with the edge weight representing cost. The spatial layout is
optimised, transforming the supergraph into a subgraph that retains the parent’s
logical edge connections into a topological form, eventually marking it as a graph
theory problem in [25][19].

2.4 Optimal approach in Topology Manager(TM)

Most factory layout problems are centred around static location planning, and
numerous reasonable heuristic solutions can be derived from them in SPS to
perform the assembly operation of a batch mix. The cost and time-tradeoff
are essential factors while planning SPS; therefore, a near-optimal approach in
an ideal time frame is the best possible solution for a TM. Standalone MILP
and metaheuristics are not enough to tackle the large search space needed in
identifying topologies on a two-dimensional plane as it indefinitely increases the
time and computational complexities as mentioned in [26][27] [28].

The linear increase in topology size with WRs exponentially increases the
search space in planning the optimal topology. Most heuristic solutions are de-
ployed in a constrained-based scenario and a fairly static location planning objec-
tive. SPS needs a solution capable of identifying dynamic near-optimal topology
in a viable time frame. Hence in the following, we will first propose several con-
cepts in a TM. An example follows this at a practical implementation of TM,
uncovering some of the abovementioned issues.

3 Topology Manager Framework

The outline of a TM framework is shown in the figure 2. The TM framework
is based on utilising the existing enterprise software infrastructure of ERP and
MES. The prerequisite to the TM planning process includes a PV list from
products scheduled over the next day and an enumerated sequence of WRs for
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every PV in the list. The pre-planning database hosts the prerequisite data that
Batch Processing Module (BPM) later retrieves and processes into batch data. A
batch data model is an aggregated data structure for the number of PVs in daily
production and their WRs sequences. As seen in the figure 2 the output of the
BPM is a logical topology comprising sets of WRs and their connections for every
PVs in the batch without spatial information. The Topology estimation and
optimization module (TEOM) in the figure 2 identifies a spatial topology based
on the logical topology from BPM and optimize before the start of the production
of the batch. The TEOM identifies different topologies relevant to the nature of
the batch data. Different methods based on graph theory and heuristics are
applied in TEOM to identify and optimize the search space for the near-optimal
topologies. The set of topologies is the outcome of the TEOM and is forwarded
to the Reconfiguration Decision module (RDM) for the decisive deployment of
the most optimal topology on the production floor. The last module in figure
2 is an RDM, an inference engine for the selection of the most optimal spatial
topologies and decision on the changeover from the currently deployed topology.
The changeover process implies a temporal loss in production due to downtime.
A reconfiguration process is triggered only if the sum of reconfiguration time
loss and the production time with the new topology is less than the production
time with the existing topology. In short, the reconfiguration process is skipped
when the existing topology fares better, considering the reconfiguration cost. The
production topology database has the final plan to be ready for SPS runtime
production.

4 Exemplification

The TM represented a generic framework for macro-level planning inside an
SPS. Practical implementation requires defined data structure, methods and
algorithms in every stage of the TM. The problem TM tries to achieve is a most
optimal topology that estimates locations for WRs and the material flow enabled
by the topology. We do not consider the processes on WRs nor their flexibility
and redundancy, assuming a single process per workstation. Thus the planning
goal becomes to optimise the material flow and thereby the distance between
WRs and the potential congestion between TRs.

4.1 Batch Processing Module

In figure 3 a multi phase process depicting data flow from ERP and MES to
a structured, logical topology representing an SPS batch is shown. A logical
topology is an undirected graph data structure with nodes representing a set of
WRs for all PVs in a batch and the linkages between WRs as the edges. Phase
1 describes a database cluster hosting a separate schema for daily production
PVs and WRs sequence data for each PV. Phase 2 is the interface between
TM and the pre-planning database retrieving the PVs list and WRs schema.
Lists of WRs are extracted from the phase 2 data depending on the PVs in the
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Fig. 2: Topology Manager Framework

production list and aligned in the same order as PVs in the production list, and
phase 3 represents this sorted 2D list data form, also known as batch data. The
terminology PVs is replaced with Product Instance (PI) in phase 3, indicating
that the PV is a product template before being enlisted in a batch. At the same
time, PI is the physical entity associated with the PV in production. The batch
data from phase 3 is converted to a logical 2D graph topology denoted by G
= {V, E} where V represents a set of WRs nodes and edges E retaining the
information from the WRs sequences.

4.2 Topology Estimation and Optimization Module

Different graph theory-based approaches are undertaken in TEOM to generate
an optimal topology from the input logical topology. The logical topology rep-
resents a graph for a complete batch, while every PI in a batch is a subgraph of
batch topology.

Objective function SPS differs significantly from a conventional production
philosophy; hence, it is at the preliminary stage to understand the cost required
to produce a PV. Since the planning stage demands topologies relevant to a
batch of PVs, travel distances between the WRs influence the makespan and
are hence used as a cost function. Throughout the estimation and optimization
process, objective function is based on cumulative eucliedean distances between
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Fig. 3: Formation of Batch and Logical Topology

WRs in PI subgraphs. As mentioned in equation 2 the cost of a topology is the
total travel distance required to visit every WR in a sequence for each PI in a
batch. The objective function for estimation and optimization stage is minimal
travel cost for the complete batch as stated in equation 1

C = min

V∑
v=1

Tv (1) Tv =

n−1∑
i=1

d(i, i+ 1) (2)

where, C = Cost of a batch topology
Tv = Travel cost in a PI subgraph
v = PI enumeration in batch
i = WRs enumeration in PI subgraph
n = Total WRs in a PI
d = euclidean distance between WRs

Factory Planning with Logical Topology The placement of workstation
nodes on the shop floor is the layout deployment to enable a batch of multiple
PVs. Ideally, the workstations could be placed at the closest possible locations
to minimize the conveyance time of the product after every process cycle on
individual WRs. The distance between the WRs is constrained by factors like
minimum spacing required for TR navigation and structural constraints (safety
and environmental blockages). Therefore, WR nodes cannot be placed in an
overlapped topological configuration even if it establishes a global minimum
cost for production but unrealistic in a physical scenario. The Logical topology
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provides the connected planar graph, and every WRs require spatial coordinates
based on the minimal cost function in equation 1.

Estimation and Optimization with Spring topology The freedom in place-
ment of the WR nodes from logical topology increases the complexity of the
problem. The edges represents a preliminary path between the nodes which can
be redefined in the later stage of path planning for TRs. Physical analogy em-
bedded in a graph with every edge as a spring force that attracts the connecting
nodes in the logical topology provides effective heuristic handling for undirected
graphs [29] [30].

A graph layout algorithm for drawing positions on a plane known as Force-
directed Placement (FDP)[31] layout injects a repelling spring force among the
nodes while expanding and contracting the edges in the whole process. FDP tries
to draw positions based on the principles of uniform nodes distribution, minimal
edge crossings, and uniform edge length but does not guarantee the implemen-
tation of these principles in the final layout[31][32]. An implementation is done
using Networkx python API spring layout[33] that uses the FDP algorithm to
draw the position on a logical topology without any spatial information. The
implicit parameters to this API are the repulsive force (k) value and a number
of iterations (ITR) determining the node separation on a planar surface and the
maximum iterations required to draw the graph, respectively. Topologies based
on Networkx spring are displayed in figure 4 for different values of K, illustrating
swelling of the topology as the repulsive forces with increasing value of K.

(a) k = 0.70 (b) k =1.30

Fig. 4: Spring FDP topologies

4.3 Reconfiguration Decision Module

The RDM is the inference engine for selecting the topology with the least pro-
duction cost in equation 1 from the set of spatial topologies generated by the
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TEOM. Since the topology is optimized over the cumulative travel cost of every
PV in a batch, an additional layer of a performance assessment model is required
to evaluate the potential of topology in terms of production KPIs, e.g. through-
put and cycle time. The edges in the topology in the SPS planning stage indicate
job routing paths between the WRs. Therefore, the stochastic losses due to con-
gestion causing time delay in TRs on overlapping edges are prominent in the
Spring topology. A dynamic Discrete Event Simulation (DES) model provides
a test-bed for testing scheduling algorithms, which eventually predicts SPS’s PI
and batch-specific KPIs. Such a DES model is not built yet for an SPS. Hence,
in the absence of a suitable scheduler for SPS, a statistical model is described in
the equations below with integer-valued uniform distribution stochastic variable
X representing the number of occurrences of congestion. The dispatch time of
the final product from vth PI from the first WRs in a topology indicates the
vacancy for the next PI loading. The product leaving the first WR is dependent
on the cumulative process times of subsequent workstations and the stochastic
time losses during the TR’s conveyance and therefore, it can be written as

DTv = P1 +

n∑
i=2

(Pi + I ·X) (3)

where Pi is a process time on workstation with range [1,n] and X represents
uniform distribution stochastic in range [1,x] with a unit time loss of I on every
crossing. The start time of a PI depends on the dispatch time of all quantities
from the previous PI and its start time as seen in equation 4.

STv =

{
0, if v = 1

ST(v − 1) +DT(v − 1), otherwise
(4)

The end timestamp ETv of vth PI is evaluated in equation 5.

ETv = STv + tv (5)

where, tv represents total makespan for the vth PI of quantity Qv and stated
below. The end times stamp ETV of the last product V for PI in the batch
provides the total required batch production time as seen in equation 6.

BT = ETV (6)

Equation 7 is for calculation of makespan for each PI with quantity Q and
estimated throughput λ.

tv =
Qv

λv
(7)

where, Qv is total quantity to be produced for vth PI and λ is the throughput
for vth PI .Throughput calculation in equation 8 is based on cycle time for 1st
product shown in equation 9 and cycle time for later products shown in equation
10.

λv =
1

CT1v + CT2v
(8)
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CT1v =

n∑
i=1

Pi +
Tv

Sv
+ I ·X (9)

CT2v = min(TTv) + I ·X (10)

where, Tv denotes total travel cost in vth PI subgraph topology scaled by TRs at
a speed Sv for that PI and TTv is an expeted takt-time for vth PI. In the final
stages a local optimum topology OT is selected with minimum batch production
time BTmin from equation 11.

OT = BTmin (11)

The reconfiguration depends on the performances of the newly found near-
optimal topology against the currently deployed topology. Reconfiguration in
equation 12 is performed only when the sum of the changeover span and the
batch production time does not exceed the makespan with the current deployed
topology BTcurr.

RCF =

{
1, if RT +BT < BTcurr

0, otherwise
(12)

where, RT denotes required reconfiguration time for a new topology for a batch
with BT production time or makespan.

5 Experimental Results

This section describes the numerical implementation performed in Python for
the TM. A test batch with seven PIs were used in the numerical exemplification
with quantities and sequences illustrated in figure 5. Each PI has two different
quantities for standard and larger batch experiments. Uniform process times are
assigned to all the WRs in a PI, with every PI having unique process times, as
shown in the figure 5. The BPM generates a logical topology of the test batch
and feeds it to the TEOM. The population of Spring layouts are generated in the
TEOM’s topology estimation stage with K value from 1.2 to 2.0 with a step in-
crease of 0.2, and ITR value from 0 to 45 with a step increase of 5.0. The process
continues until the cost function converges on the objective function mentioned
in the equation 1. The best candidate from the population of Spring topology is
found at values K at 1.3 and ITR at 40. The best Spring topology with minimal
cost is displayed in the figure 6a. At the same time, the crossings were found on
subgraphs for PIs 2,3 and 4 to be 2, 1 and 3, respectively. The variance of the
discrete stochastic variable X in equation 3 depends on the number of crossings.
The random.randit API generates the integer stochastic variable with a lower
limit of 0 and a higher limit as the total number of crossings for respective PIs. A
grid-based FLP solution based on the optimal Spring topology in 6b illustrates
the two-dimensional spatial positions for WR nodes in the test batch.
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The optimal Spring topologies is subjected to performance evaluation through
a statistical model from section 4.3 in RDM. The results in figure 7 are gener-
ated for smaller batch sizes and a relatively large batch size with different process
times and quantities for individual PIs displayed in the legend of the individual
figures. From the figure 7a, Spring topology takes 2421 unit time to finish the
batch production as compared to 6836 unit time for a larger batch seen in figure
7b.

Fig. 5: Batch for numerical exemplification

(a) k = 1.3 and ITR = 40 (b) Shop floor layout based on Spring

Fig. 6: Optimal Topology from TEOM
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(a) Smaller batch (b) Large batch

Fig. 7: Performances of the Spring Topology

6 Discussion and Conclusion

A flexible and reconfigurable paradigm like SPS enables and requires continuous
adaptation to a varying batch mix of product variants. A model-based TM frame-
work presented can achieve a strategic planning objective in SPSs by yielding
adaptable topologies to the changing batch mix. The development of the TM is
pivoted on integration with the existing manufacturing software ecosystem and
extending the capability of an enterprise to plan factory layout for a SPS. The
overall goal of the TM is to identify the best possible topology in a defined search
space and decide whether to change the new topology or keep the existing one.
The reconfiguration process will require an SM that executes task for WRs and
TRs on the shop floor.

A near-optimal heuristic approach with graph theory is more computation-
ally viable than a global optimization method as the major challenge is deploying
solutions in a short span. Later exemplified with graph theory FDP based opti-
mization with Spring Topology, and a statistical model in RDM. The grid-based
approach reduces the computational requirement by optimising discrete space
coordinates compared to the continuous ones. The performance KPIs of the
topologies are evaluated in TEOM with a mathematical stochastic model in the
absence of a suitable simulation tool. The results are outcome of a methodol-
ogy that assesses planned topologies for the potential performance before be-
ing deployed on the shop floor. SPS planning objective can be associated with
multiple isomorphic topological graphs apart from the Spring topology. A non-
overlapping edge topology is capable of avoiding stochastic losses due to collision
and therefore, an extensive study is required in this direction to improve the SPS
planning.

Conventional FLP methods are focused on static layout and suited to a de-
fined set of PVs; on the contrary, graph-based TM provides a faster delivery of
topological layouts that can be adapted to a batch of changing PVs mix. TM
provides a holistic framework that can support relevant graph-based optimiza-
tion methods apart from Spring topology with an approximated assessment of



Topology Manager 13

the performances of the planning stage. TM also represents a digital twin for SPS
planning capable of data modelling, optimization methods and decision making
for deploying optimal configuration on the production floor.

Due to congestion, the stochastic nature of losses during material flow is
subjected to efficient path planning for TRs in SPS. These uncertainties can be
reduced with a topological form that enables a collision-free path for TRs in
every possible sequence of PVs in a batch. A comprehensive graph theory-based
method shall assist explore topologies to deploy shop floor layouts that can lead
to a predictive performance assessment. In the future, a grid-based shop floor
design, when incorporated with spatial constraints like safe passages, structural
blockages, and no deployment zones, enables a pragmatic planning solution in
a real-world factory scenario. Furthermore, solutions requiring more expansive
search space can be yielded if applied with metaheuristic algorithms, especially
in an upscaled production environment with multiple good solutions.
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List of symbols and abbreviations

λv Throughput for vth PI
BT Makespan for whole batch
BTcurr Makespan for deployed topology
C Cost function in Topology estimation and optimization
CT1v CycleTime for 1st product in vth PI
CT2v CycleTime for all product except the 1st in vth PI
DTv Dispatch timestamp of last product on 1st WR for a vth PI
ETv End timestamp for a vth PI
I unit time loss due to congestion on crossings
n number of WRs in a PI
Pi Process time of a ith WR, where i ϵ [1,n]
Qv Quantity to be produced for a PI in production
RT Reconfiguration span for topology
Sv Speed of TR for a PV in production
STv Start timestamp for a vth PI
Tv Total travel length of PV subgraph
tv Makespan for a vth PI
TTv Expected Takt-time for a vth PI
V maximum number of PV in a batch
v PV number in a batch, where v ϵ [1,V]
X Stochastic variable with Uniform distribution where X ϵ [1,x]
x Maximum number of crossings on PV subgraph
BPM Batch Processing Module
DES Discrete Event Simulation
DLP Dynamic Plant Layout
ERP Enterprise Resource Planning
FDP Force-Directed Placement
FLP Factory location Problem
GA Genetic Algorithm
LMAS Line-less mobile assembly system
MES Manufacturing Execution System
MILP Mixed Integer Linear Programming
PI Product Instance
PV Product Variant
QAP Quadratic assignment problem
RDM Reconfiguration Decision Module
SPS Swarm Production System
TEOM Topology Estimation and Optimization Module
TM Topology Manager
TR Transfer Robot
WR Workstation Robot
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