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ABSTRACT 

In this paper, we present the non-blocking atomic snapshot 

algorithms for High-Performance Computing in MPI RMA model. 

An Atomic Snapshot is useful for remote memory access where 

different processes have access to the concurrent data structure. 

Applications of atomic snapshot building multi-writer registers 

from single-writer registers, radar tracking system, counters, 

accumulators, check-pointing and concurrent backups, etc. 

Snapshots also useful for monitoring the parallel systems. An 

Atomic snapshot contains two operations update and scan. 

In update processor writes the content to associated location and 

scan gives the linearizable view of all n segments. This paper 

presents non-blocking atomic snapshot in which update used 

MPI_Accumulate and MPI_Compare_and_swap atomic 

operations. In scan we used MPI_Get_accumulate operation for 

reading the register values atomically. In this paper, we proposed 

two non-blocking atomic snapshot algorithms. One algorithm for 

one snapshot and second algorithm for new and old snapshot. 
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1 Introduction 

An Atomic snapshot contains two operations update and scan [1]. 

In update processor writes the content to associated location and 

scan gives the linearizable view of all n segments [1]. 

Linearizability [4] is the fundamental requirement for designing the 

concurrent data structure. Past two decades authors expressed their 

view on atomic snapshot but mostly theoretical [2,3] work. In this 

paper we present the non-blocking atomic snapshot in MPI RMA 

model. In atomic snapshot memory, memory is partitioned into n 

parts, each partition for one processor, where each processor can 

write and all other processors can read the latest updated values. In 

the term of consistency guarantees 3 types of registers: Safe, 

Regular and Atomic [5]. 

In this algorithm, we used MPI_Accumulate and 

MPI_Compare_and_swap which are atomic operations. 

MPI_Accumulate performs the atomic update and in this algorithm, 

we used MPI_Op - MPI_REPLACE in MPI_Accumulate. In fig. 1, 

one-sided communication in MPI RMA processes can read and 

write on remote memory. In this paper, we design the single-writer 

multi-reader snapshot algorithm for MPI RMA model. Each 

process can update the value on the shared memory buffer also 

known as window buffer at only one position according to its rank 

as shown in fig. 2 and all processes can read this window buffer 

atomically. For update operation we used the MPI_Accumulate and 

MPI_Compare_and_swap atomic operations. MPI_Accumulate 

provides atomic read-and-update operations. 

In MPI RMA two types of synchronization calls: 1. Active target 

communication, 2. Passive target communication. In this paper, we 

used Active target communication synchronization call. In active 

target communication when data is moved from one process to 

another, both processes are involved in the communication [6]. 

For synchronization we used MPI_Win_fence. MPI_Win_fence is 

the simplest Active target synchronization. In Window all 

processes collectively call fence for synchronization. 

Window buffer is shared array for all processes. In update operation 

each process updates its value according to window buffer position, 

if process 0 wants to update the window buffer array, then it will 

update at 0th position of the window buffer as shown in Fig. 2 and 

for process 1 window buffer’s 1st position and so on until all 

processes finished update operation. 

Window buffer (W_b[0,1,2, …,n]): 

 

                     Figure 1: Update by Processes 



  

 

 

 

 

                               Figure 2: Scan by Processes 

2 Non-blocking Atomic Snapshot Algorithm for 

one Snapshot 

update(rank,size, window_buffer1, window_buffer2,window) 

begin 

1. Integer: update=rank; 

2. for i=0 to size-1 

3. do 

4. MPI_Accumulate(update , i , update*sizeof(int) , 

MPI_REPLACE, window); 

5. If(window_buffer2[i] != window_buffer1[i]) 

6. MPI_Compare_and_swap(window_buffer2[i], 

window_buffer1[i]); 

7. od; 

     end update; 

     scan(rank, size, window_buffer1, window_buffer2,window) 

     begin 

1. for i=0 to size-1 

2. do 

3. MPI_Get_accumulate(window_buffer2[i], rank, 

i*sizeof(int), MPI_NO_OP, window); 

4. od; 

     end scan 

            

3 Non-blocking Atomic Snapshot Algorithm for 

old and new Snapshot 

update(rank,size,window_buffer1,new_snap,old_snap,windo

w) 

begin 

1. Integer: update=rank; 

2. for i=0 to size-1 

3. do 

4. MPI_Fetch_and_op(&new_snap[i],&old_snap,MPI_IN

T,rank,i*sizeof(int),MPI_REPLACE,window); 

5. MPI_Accumulate(update , i , update*sizeof(int) , 

MPI_REPLACE, window); 

6. If(new_snap[i] != window_buffer1[i]) 

7. MPI_Compare_and_swap(new_snap[i], 

window_buffer1[i]); 

8. od; 

     end update; 

     scan(rank, size, new_snap, old_snap, window) 

     begin 

1. for i=0 to size-1 

2. do 

3. MPI_Get_accumulate(old_snap[i], rank, i*sizeof(int), 

MPI_NO_OP, window); 

4. MPI_Get_accumulate(new_snap[i], rank, i*sizeof(int), 

MPI_NO_OP, window); 

5. od; 

     end scan 
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4 Comparison of snapshot algorithms 

Table 1– Comparison According to Primitive used 

Snapshot Algorithm Primitive used 

Lock Free r/w register 

Block Update r/w register 

Anderson r/w register 

Afek et al r/w register 

Aspnes and Herlihy r/w register 

Dwork et al r/w register 

Chandra Dwork LL/SC 

Rachman Dyn. T&S 

Attiya and Herlihy T&S 

Attiya and Rachman r/w register 

Kirousis et al r/w register 

Coordinated collect LL/SC 

Non-blocking Atomic Snapshot … CAS 

 

5 Benchmark 

For testing these algorithms, we used HPE Cray EX Supercomputer 

and test the results of scan and update operations for different nodes. 

 

 

 

 

 

 

 



  

 

 

Table 1 – Execution Time for update on 2 Nodes 

No of Updates No of Nodes Execution 

Time(seconds) 

512  2 50.2962 

256  2 12.4448 

128  2 2.8598 

64  2 0.7223 

32  2 0.2517 

16  2 0.0805 

8  2 0.0400 

2  2 0.0222 

 

 

 

As we can see in the table 1 when we used 2 updates on 2 nodes 

it’s pretty fast. For this it took only 0.0222 s but when we increase 

the no of updates to 8 then it took more time as compare to 2 

updates. 

 

And when we increase the updates from 64 to 128 then execution 

time increase approximate 4 times. 

But when we increase the updates 512 then on 2 nodes it so time 

consuming as we can see 50.2962 s. So now we need more nodes 

in parallel to reduce this execution time. 

 

 

Table 2 — Execution Time for 128 Scans 

No of 

Scans 

No of Nodes Execution 

Time(seconds) 

128  2 0.05236 

128  4 0.04925 

128  8 0.04814 

128 16 0.04693 

128 32 0.04463 

 

 

 

 

     Table 3 — Execution Time for 128 updates 

No of Updates No of Nodes Execution 

Time(seconds) 

128  2 2.9000 

128  4 2.8598 

128  8 2.0034 

128 16 1.1490 

128 32 0.9555 

Table 4 —Execution Time for 256 updates 

No of Updates No of Nodes Execution 

Time(seconds) 

256  2 12.4448 

256  4 11.6189 

256  8 7.6956 

256 16 4.2775 

256 32 2.6203 

 

Conclusion  

In this paper we present non-blocking atomic snapshot algorithms 

for High Performance Computing in MPI RMA model. We 

designed the single-writer multi-reader algorithm where each 

process can update the assigned position for example Process 0 can 

update 0th position of shared memory and Process 1 can update 1st 

position of shared memory and so on. But all processes can read 

any position of the shared memory without locking. Using 2nd 

algorithm, we can take the two non-blocking atomic snapshot as 

mentioned in algorithm old snap and new snap of the shared 

window buffer.  In future work we will design the non-blocking 

multi-writer multi-reader atomic snapshot for High-Performance 

Computing in MPI RMA. 
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