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Abstract—This paper presents a comprehensive study of
deep learning methods and datasets used for solving the
palmprint recognition problem. The quality of image em-
beddings provided by deep neural networks, pre-trained on
the ImageNet dataset, are evaluated on palmprint recognition
in the visible spectrum task. In our tests, we used twelve
publicly available datasets obtained with different types of
acquisition procedures: constrained, partially constrained and
unconstrained. Sixteen convolutional neural networks (two
from the VGG family, six from ResNet, three from Inception,
two from MobileNet and three from DenseNet) were evaluated.
We analyzed the results from the point of view of special-
ization potential, dataset difficulty and general parameter
tuning. For evaluation, EER (Equal Error Rate) was employed.
We ranked the datasets and appraised the feature vectors
computed by the pre-trained networks using this metric. The
best results, on average, were provided by the deep neural
networks from the MobileNet family. The distances used for
comparing the feature vectors were Euclidean, Cityblock,
cosine and correlation. The best results were obtained with
the cosine family distances.
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I. INTRODUCTION

Since the advent of technology, biometric identification
systems have become an integral part of our daily lives.
Unlike keys and tokens, they cannot get lost, and, unlike
passwords, they cannot be forgotten. The development
of such a system is a matter of daily convenience and
security. There are multiple types of biometric features
used for the recognition of humans. The most popular
ones are, in order, fingerprints, facial, iris, palmprints and
voice biometric data [1]. In this article, the focus is on the
increasingly popular palmprint biometrics.

Palmprint recognition is a highly accurate, efficient and
promising biometric technique for identity authentication
that has recently gained more popularity and user accep-
tance due to privacy issues brought up by other biometric
identification systems. The palmprint covers a greater
area of the human body than the fingerprint, making it
much easier to capture and is considered more robust
[17]. The identification process allows the use of any
low-resolution camera present in most mobile devices,
laptops, and even some desktops instead of specialized

sensors. Palmprints recognition is less intrusive than
more popular methods of recognition like voice or face
recognition as it is harder to identify from public sources
without consent, e.g., CCTVs or public videos, because
of obstructions, resolution and viewing angles; they are
more difficult to counterfeit than faces as they are not as
publicly displayed.

Palmprint identification can be easily integrated into
existing systems like Augmented and Virtual Reality head-
sets, driving systems, home biometrics, gesture tracking
systems, and any other system that requires the use of
the hands. Therefore, their potential use is excellent as
long as the system in place is reliable.

In this paper, we evaluate several neural network ar-
chitectures pre-trained on the ImageNet dataset to ob-
tain both baselines for the recognition rate, as well as
insights into the current state of the research of palmprint
recognition in the visible spectrum (spectral images at
different wavelengths or 3D images are not considered).
We also analyze the degrees of difficulty of the available
datasets used in the literature and assess the importance
of different training parameters. The article is organized
as follows. Section 2 reviews datasets available in the liter-
ature and presents the state of the art methods. Section
3 describes the evaluation pipeline. Section 4 provides
the evaluation results and discusses the importance of
each dataset and each parameter. Finally, in Section 5,
we derive a conclusion and in Section 6, we present the
direction for our future work.

II. DATASETS

A biometric recognition system can either validate a
person’s biometric or identify a person based on its
biometric. Such a system typically creates a biometric
template, either implicitly or explicitly, for each person,
using a database. Then, using the biometric template,
the system can either verify the authenticity or identify a
person based on its biometric. The database is created
from a dataset containing multiple biometric features,
each associated with a person. In public datasets, the
person’s identities are anonymized.



A. Dataset Types

Palmprint recognition datasets are divided into three
categories, as described in [30], based on the restrictions
imposed by the acquisition process.

The first category is constrained acquisition. In this
category, restrictions are imposed on hand placement,
background and devices. The fingers must be straightened
and separated, the background light should be as dim
as possible and the photo has to be taken from only
one device. Furthermore, the acquisition is either touch-
based, using the hand to touch a scanner, or touch-less,
with digital devices. Therefore, these datasets represent a
rigorously controlled environment, where feature extrac-
tion is the primary goal.

The second category is partially constrained acqui-
sition. This category extends the former by removing
one of the restrictions, i.e., either the background is
unrestricted, e.g., the pictures may be taken outdoor,
either the positioning of the hand is unrestricted, e.g.,
the fingers may be close to each other and the hand may
be rotated, either more than one device must be used.
Therefore, these types of datasets represent a partially
restricted environment, where the goal is not only the
feature extraction but also asserting the robustness of the
algorithm under different environmental changes, a more
realistic setting.

Finally, the third category is unconstrained acquisition.
This category represents a real-world scenario with an
unconstrained background, hand positioning, and mul-
tiple devices for acquisition, an actual unconstrained
environment.

B. Available Datasets

The oldest dataset, released in 2003, publicly available
for research is PolyU (version 2) from the Hong Kong
Polytechnic University [31], a constrained dataset. The
background of the images is dark, with little to no
lighting for each image. This dataset is one of the two
touch-based datasets available. No left/right images are
provided. Samples of the dataset are available in Figure
1.

Figure 1: PolyU dataset samples from two individuals

Newer constrained databases are based on touch-less
acquisition. The background lighting is more noticeable
than the touch-based ones, therefore the image is much
noisier, closer to a real life scenario. Some similar datasets
of this category are Casia [23] (2005), IITD (version 1) [24]

(2006), COEP [5] (2010), GDPS [7] (2011) are Tongji [32]
(2017). In Figure 2 samples of each dataset are shown.

(a) Casia (b) IITD (c) COEP (d) Tongji

Figure 2: Samples from similar constrained datasets

Casia samples are similar to PolyU samples, but they
also preserve hand geometry. IITD has much more light-
ing in the background, i.e., more noise is present. COEP
is similar to Casia, with added landmarks for easier
identification of the hand positioning for smoother ROI
segmentation. Tongji provided images with poor lighting
conditions and illumination, similar to real-life scenarios.

In 2017, one of the first large-scale partially constrained
dataset was released. This dataset, 11k-Hands, provides
both front and back pictures of hands, as well as gender
information. The dataset provided both left/right hand
images. The hand positioning is unconstrained. In this
thesis, we used only the images of palmprints, frontal
images. Samples of the dataset are available in Figure 3.

Figure 3: 11k-Hands dataset samples from two individuals

One of the recently released datasets (2019) is the
PolyU-IITD dataset. This dataset is made up of two
parts, treated as individual datasets. The first part is
the constrained dataset PolyU-IITD-Original. Palmprints
and hand geometry are cleaner than the other con-
strained datasets. The second part is the PolyU-IITD-
TwoSessionChallenge dataset, a small dataset created in
two sessions. Images from the second session are either
taken many years apart or present paint spots over them.
Samples of the dataset are available in Figure 4.

Birjand University Mobile Palmprint Database (BMPD)
[15] and Sapienza University Mobile Palmprint Database
(SMPD) [16], both released in 2019, are two partially
constrained mobile databases for palmprint recognition.
Both datasets have an unconstrained background. SMPD
is richer than BMPD as it provides four different orien-
tations of the hand instead of two, but BMPD provides



Year Dataset Acquisition Extra Device Hands Images Format Resolution

2003 PolyU (V2) C touch-based scanner 386 7752 bmp 4:3
2005 Casia (V1) C touch-less digital camera 624 5502 jpg 4:3
2006 IITD (V1) C touch-less digital camera 470 3290 jpg 4:3
2010 COEP C touch-less digital camera 168 1344 jpg 4:3
2011 GDPS C touch-less two webcams 100 1000 bmp 4:3
2017 Tongji C touch-less digital camera 1200 12000 tiff 4:3
2017 11k-Hands PC hand position digital camera 380 11076 jpg 4:3
2018 PolyU-IITD-Original C touch-less two digital cameras 700 12326 jpg 4:3
2018 PolyU-IITD-TwoSessionChallenge UC difficult two digital cameras 35 1126 - -
2019 BMPD PC background smartphone camera 41 1640 jpg 4:3
2019 SMPD PC background smartphone camera 100 4400 jpg 4:3
2019 MPD (V2) UC mobile two smartphone cameras 200 16000 jpg 4:3

C - constrained PC - partialy constrained UC - unconstrained

Table I: Available datasets

(a) PolyU-IITD-Original (b) PolyU-IITD-TwoSessionChallenge

Figure 4: PolyU-IITD dataset samples from two different
individuals

both left/right-hand images. Samples of the dataset are
available in Figure 5.

(a) BMPD
(b) SMPD

Figure 5: Samples from mobile partially constrained
datasets

Lastly, the MPD dataset is an unconstrained dataset, the
only dataset of this type that we analyzed. The images are
taken using two mobile devices. Left/right-hand images
are available. Samples of the dataset are available in
Figure 6.

Figure 6: MPD dataset samples from two individual

A list of different statistics for all the mentioned
datasets are listed in Table I.

III. LITERATURE REVIEW

The topic of palmprint recognition has been treated
many times by different authors. The compressive study

of [33] describes results from many palmprint recogni-
tion methods in great detail. In their work, the authors
separate those methods into five categories, namely, en-
coding, structure-based, statistical-based, subspace, and
deep learning. We refer to the first four as conventional
methods.

A. Conventional methods

Encoding type methods encode the palmprint image
to a code that is robust to translations and rotations and
use the code for recognition. Structure-based methods
are more standard methods that use information such as
the orientation and position of ridges and minutiae and
other feature points such as palm lines. Statistical-based
methods use the mean and variance and other moments
in the image as hallmarks for recognition. Subspace
methods use the projection of high-dimensional data, the
image in this case, to low dimensional data. Some of the
top methods are presented in Table II.

Method Type Dataset EER RR

CR_CompCode [19] Encoding Custom - 98.78%
LLDP [22] Structure PolyU-V2 - 100%

High order moments [3] Statistics
IITD-V1 7.89% 92.32%

Casia 1.81% 98.66%
PolyU-V2 1.0% 99.29%

LPDP [8] Subspace PolyU-V2 - 99.7%

Table II: Conventional methods

There are two main issues concerning conventional
methods. The first one is their dependence on a good
ROI (Region of Interest) segmentation, otherwise known
as detecting the palm’s location in the image. The second
one is that conventional methods tend to be highly tuned
for a single particular dataset.

B. Deep learning

The more recent category of methods uses neural
networks and deep learning techniques. These techniques
are gaining momentum in the domain of palmprint
recognition as well as other domains for their flexibility



and representational ability. In [14], the ROI and feature
extraction is done using transfer learning by AlexNet
networks. The final classification is done using KNN,
RandomForest and SVMs.

Recent papers use neural network architecture to train
an end-to-end recognition system. In [6], the authors
use a smaller MobileNet ([12]) architecture trained from
scratch on the PolyU database and in [34], the authors
use siamese neural networks ([18]) with the VGG-16 ([27])
architecture to train the system. Lastly, a top solution that
uses neural networks is provided in [21]. The authors use
a slightly modified triplet network ([11]) model with a
loss function that takes translations of the images into
account during training by attempting to compute the
minimum distance between multiple translated feature
maps obtained from one image and the original from the
other. Most importantly, the training is done on the left
hands of IITD and the network is then tested on multiple
datasets. The paper mentioned earlier is the only paper
we could find where cross-database testing is used, which
provides much more valuable insights into the system’s
ability.

Method Dataset EER RR

AlexNet Convolutions + K-NN[14]
PolyU 0.0156% -
IITD 0.0328% -

AlexNet Convolutions + RF [14]
PolyU 0.0625% -
IITD 0.0889 -

AlexNet Convolutions + SVMs[14]
PolyU 0.0125% -
IITD 0.0276% -

MobileNet [6] PolyU - 99.96%

VGG-16 Siamese [27]
PolyU 0.28% -
XJTU 4.559% -

Triplet CNN [11]
IITD right hands 0.6% 99.2

PolyU-IITD 0.267% 98.6
Casia 0.51% -

IV. EVALUATION OF DATASETS AND PRE-TRAINED

NETWORKS

Transfer learning is a machine learning technique in
which parts of a model trained for one task (the base task)
are used to train on another task (the target task). The
scope of the technique is transfer learning. If a model is
trained on a general task, then the information it encodes
should be useful for a more particular task. Also, a model
trained on a similar task should encode useful general
information. Therefore, the base task should be either
a general task or a task related to the target task. In
the context of deep-learning, transfer learning is used
by initializing part of a neural network with weights
from another neural network trained on another dataset,
typically a more nonspecific dataset. Both the network
for the target task and the base task should have similar
architectures, at least for the initialized part. The biggest
and most popular dataset is ImageNet [25], with hundreds
and thousands of images depicting various objects. It is
the most nonspecific image dataset available. A lot of

the popular neural network architectures are trained on
ImageNet and the weights are made public. Therefore,
neural network frameworks offer easy integration with
pre-trained models.

In this section, the evaluation of different image em-
beddings created using ImageNet pre-trained models is
presented. The image embeddings or the weights of the
pre-trained models can be further used for training on
the palmprint recognition task.

There are two general approaches to transfer learning.
One approach uses a part of a pre-trained model, typically
the last convolutional layer of one of the fully connected
ones, to obtain image features from the target dataset,
then train a classifier on the features obtained. The
other approach to add fully connected layers on top of
a pre-trained model, typically on top of either the last
convolutional layer or the fully connected layer before the
final one. Then, part of the network or the whole network
is trained on the target dataset.

For both approaches, several decisions can either make
or break the target model. One such decision is the base
neural network architecture that is used. This architecture
depends mainly on the target dataset and not on the
base one, as each architecture has its drawbacks. Another
design consideration is the similarity between the target
dataset and the base. If there is no similarity, transfer
learning will often provide poor results.

Besides transfer learning design consideration, when
building a neural network for new datasets, parameters
such as image resolution, distance metric and prepossess-
ing are essential, as well as which target dataset to choose.
In this section, we conduct experiments to compare the
performance on the task of palmprint identification of
features extracted from the last convolutional layer of six-
teen neural network architectures pre-trained on the Ima-
geNet dataset on the twelve datasets previously explored,
without any training. We also analyze the discrimination
ability of the image embeddings under different dataset
parameters and network parameters. The main objectives
of our experiments are:

• evaluating the specialization potential and knowl-
edge transfer ability of pre-trained neural networks
on palmprint datasets

• ranking the difficulty of datasets for our future work
• setting baselines for deep learning models for our

future work
• asserting the importance of general parameters
The experiments are designed as follows. Multiple im-

age resolutions are selected and each one of the twelve
datasets is resized accordingly. Then two different pre-
possessing schemes are applied to the resized images.
Then, sixteen neural networks are loaded and the feature
maps of the last convolutional layer are fetched. Then, a
popular pooling method is applied to the feature maps



to obtain the final image embeddings. From the image
embeddings, by choosing a distance metric, a pairwise
distance matrix is created. A boolean pairwise label matrix
is also computed from the initial labels. A truth value (1)
in the pairwise label matrix on column i and j is given if
the label at position i is equal to the label at position j .
The final score is the equal error rate computed using the
lower triangular portion of each matrix. Samples from the
same person should be as close as possible and samples
from different persons should be as far as possible in the
feature space. This scoring method allows us to evaluate
the potential use of the image embeddings for training
neural networks.

The evaluation process is designed as a staged pipeline
with the following stages:

1) Dataset resize
Resize, center and pad images in the dataset to the
following resolutions:

• 224x224

– Native resolution of the majority of the pre-
trained models

• 299x299

– Native resolution of the rest of the models

• 320x240, 360x270, 400x300

– Resolution that preserves the aspect ration of
majority of the datasets while also keeping
the computational cost of the networks rea-
sonable. See Section II for details.

2) Preprocessing
Normalize the images

• standard

– Rescale of the pixels from [0, 255] to [-1, 1]

• original

– Apply the preprocessing used on ImageNet of
the network

3) Network selection
Use the convolutional layers, with the weights from
ImageNet, to extract features for each resolution and
preprocessing. Five families of architectures were
used:

• VGG family

– VGG16 [27], VGG19 [27]

• ResNet family

– ResNet50 [9], ResNet101 [9], ResNet152 [9]
– ResNet50V2 [10], ResNet101V2 [10],

ResNet152V2 [10]

• Inception family

– Xception [4], InceptionV3 [29]
– InceptionResNetV2 [28]

• MobileNet family

– MobileNet [12], MobileNetV2 [26]

• DenseNet family

– DenseNet121 [13], DenseNet169 [13],
DenseNet201 [13]

4) Pooling
Extract the final image embedding by pooling the
feature maps. The following pooling were used:

• GlobalMaxPooling [20]

– Pool the max value for each channel

• GlobalAveragePooling [20]

– Pool the average value for each channel

• GlobalMaxPooling + GlobalAveragePooling

– Apply both poolings and concatenate the
results

5) Distance
Compute the distance matrix of the image embed-
dings for each dataset. The distance functions used
have the non-negativity, identity of indiscernibles
and similarity properties.

• `p family - euclidean, cityblock
• cosine family - cosine, correlation

6) Evaluation
Compute the equal error rate (EER) using the lower
(or upper) triangular portion (excluding the diago-
nal) of the distance matrix. Samples from the same
person should be as close as possible and samples
from different persons should be as far as possible
in the feature space. This scoring method allows us
to evaluate the potential use of the feature maps for
training neural networks.

In total, 18432 configurations were tested. Each step
was run individually, on input from the previous step.
The results offer meaningful information about the qual-
ity of ImageNet embeddings for palmprint recognition.
Those embeddings are especially useful in the context of
Siamese or Triplet networks because the equal error rate
correlates with the quality of the embedding space.

V. RESULTS

The TensorFlow [2] library was used for loading and
running the pre-trained models. The distance and equal
error rate evaluation were computed using our custom
CUDA implementations. The evaluation pipeline took six
days to complete on an FX-8120 system with a single GTX
1080 Ti GPU.

One of the evaluations’ objectives is to evaluate the
quality of the image embeddings obtained from the pre-
trained networks. The mean and standard deviations of
the equal error rates obtained are presented in Figure 7,
using data from our experiments. For each configuration,
the preprocessing that had provided the best results were
selected. The MobileNet family has the best results across



Figure 7: Point plot of the equal error rates obtained for each network on the available datasets. The MobileNet family
has the lowest overall error rate, followed by the VGG family. The ResNet and Inception families of models provide
much higher error rates on constrained datasets. On partially constrained and unconstrained datasets, the differences
start to diminish.

the board, followed by the VGG family. One reason for
this trend is the simplicity of the convolutional kernel,
imposed by the separable convolution layer, used in the
MobileNet family of architectures. Similar kernels are used
in conventional methods for feature extraction. Further-
more, from Figure 7, the difficulty of each dataset can be
inferred. Unconstrained datasets are more complicated,
in our context, than partially constrained ones, while
partially constrained datasets are more complicated than
constrained datasets. This result is motivated by the
restrictions in the acquisition process. The MobileNet
family’s results on the hardest partially constrained and
unconstrained analyzed datasets, plotted by the image
resolution, distance and best pooling, are presented in
Figure 8. Empirically, the best overall distance metric, on
all the datasets, is the cosine distance, closely followed
by the correlation distance. However, image resolution
depends on the particular dataset. For our single uncon-
strained dataset, MPD, a larger input image did not yield
any decrease in the equal error rate. On the other hand,
for constrained and partially constrained datasets, an
increase in image resolution yields a small decrease in the
error rate at the expense of computational time. The pool-
ing method is entirely network and dataset dependent. As
for preprocessing, this is mostly architecture-dependent,
with the ResNet preferring the original preprocessing,
while the other architectures yielded better results using
a standard preprocessing. The best configuration for each
dataset is presented in Table III.

Figure 8: The lowest equal error rates of the MobileNet
family for each image resolution and distance on the
hardest datasets



dataset PolyU-IITD-O IITD COEP Casia GPDS Tongji PolyU 11k-Hands BMPD PolyU-IITD-TSC SMPD MPD

Network VGG16 DenseNet201 MobileNet MobileNet MobileNet MobileNet DenseNet201 MobileNetV2 VGG16 VGG16 MobileNetV2 ResNet101
Image Resolution 400x300 400x300 400x300 400x300 360x270 400x300 224x224 400x300 360x270 320x240 400x300 224x224
Preprocessing original original standard standard original standard standard original original standard original original
Pooling GAP+GMP GAP GAP GAP+GMP GAP+GMP GAP+GMP GAP GMP GMP GMP GAP GAP
Embedding size 1024 1920 1024 2048 2048 2048 1920 1280 512 512 1280 2048
Distance cosine cityblock cosine cityblock cityblock cityblock cosine cosine cosine euclidean cosine cityblock
Equal Error Rate 2.94 5.15 5.62 5.65 6.91 9.44 11.07 14.18 22.22 25.57 29.78 37.14

Table III: Best configuration for each dataset

VI. CONCLUSION AND FUTURE WORK

Deep-learning frameworks already reached a point of
maturity in the frame of conventional deep-learning mod-
els, with many architectures and pre-trained networks
available. However, the transferability of knowledge em-
bedding in deep neural networks trained on large image
classification datasets is not yet assured. In this work,
we analyzed in-depth the behavior of sixteen convo-
lutional neural networks on twelve palmprint datasets,
publicly available, using weights from pre-trained models
on the large ImageNet dataset. Pre-trained models pro-
vide image embeddings of a higher quality for datasets
subject to various constraints in the acquisition pro-
cess than less constrained palmprint recognition datasets.
Therefore, pre-trained deep-learning models can extract
palmprint-related features without any additional training
but are highly susceptive to noise added by the ambient
background, translations and rotations. The least noise
susceptive architecture was the MobileNet architecture,
which, similarly to conventional methods, uses less com-
plicated convolutional kernels via separable convolutions.
Based on the observations presented in our paper, we
plan to do a large scale training of Deep Bayesian Neural
Networks for Palmprint Recognition. All the empirical
data obtained in our experiments will be used to decide
on significant parameters such as image resolution, pool-
ing, network architecture and datasets.
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