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Abstract—Machine learning and especially deep learning ar-
chitectures provide a fresh perspective on the study of many
body physics phenomena. In this paper, we employ Restricted
Boltzmann machines (RBM) to represent quantum many-body
states and find connections that can be made useful to quantum
many-body physics research, ultimately leading to a better un-
derstanding of the fundamental nature of entanglement entropy
in quantum physics. In this work, we establish the conditions for
translating RBMs into Matrix Product States (MPS), showing
that deep learning algorithms can be exploited as a powerful tool
for an efficient representation of quantum states. We present an
algorithm for mapping an RBM into an MPS, with a specific
proof for Ising model. We discuss the upper entropy bound
and entanglement properties resulting from such a connection,
together with the consequences of our results in a broader
context.

Index Terms—Tensor Networks, Matrix Product States, Re-
stricted Boltzmann machines, Machine learning, Deep learning

I. INTRODUCTION

Due to its intrinsic flexibility, deep learning [1] has found
so far a wide use in several applications in physics and com-
puter science, including computer vision, image classification,
speech recognition, natural language processing or recom-
mender systems. Machine learning and many-body physics
are separate disciplines but share the common need for highly
efficient representations of multivariate function classes. Big
data analytics require novel methods to efficiently manage
broad and diverse sets of data.

Classical information algorithms deal with pattern recogni-
tion and classification. Recently, machine learning techniques
have been introduced to solve physical problems. Existing
problems in machine learning, computational neuroscience,
natural language processing, robotics, pattern and image
recognition or signal processing generate vast amounts of high
dimensional data. Tensors provide an efficient, natural and
compact representation for such data via low-rank approx-
imations. Deep learning techniques are extremely useful to
compress high dimensional data into low dimensional sets and
have been applied to find hidden patterns from various data
input representations, with highly robust results against noise.

Restricted Boltzmann machines (RBM) [2] are one of the
most applied deep learning algorithms, extremely useful in var-
ious applications requiring feature extraction or dimensional

reduction methods using probability distribution modelling of
diverse data input such as image, video or sound. RBMs
have recently attracted great interest due to their versatility
in several unsupervised and supervised learning tasks.

Recently, RBM has also attracted significant attention in the
field of quantum many-body physics [3], extending the bridge
between the fields of deep learning and quantum physics in
general. A study of the physical rules behind neural networks
could provide an answer to the great success and development
of deep learning in physics.

An RBM can be seen as a bipartite undirected model
describing the generative process in which a data vector can
be generated from a binary hidden vector. This bipartite struc-
ture allows fast data encoding and sampling-based inference,
helping with processing a great amount of data using complex
models.

Previously applied to mostly data science problems, ma-
chine learning methods started to address important questions
from physics, with recent advances in quantum many-body
systems for reliable classification and detection of phases of
matter or enhancing the quantum systems simulators.

Several schemes of machine learning, including supervised,
unsupervised or reinforcement learning have been successfully
applied to quantum systems of spins, bosons or fermions, in
combination with gradient methods, Monte Carlo or others.
Moreover, finding new methods to extract information from
quantum devices has become a feasible and efficient method
and important stage in the development of recent quantum
simulators.

Finding efficient wavefunctions that parametrize the phys-
ically relevant degrees of freedom in an exponentially large
Hilbert space is a major tasks for the quantum many body
theory [4]. The main issue is the exponential complexity of
quantum many-body states with the number of constituents.
Highly sophisticated computational models are today capable
to efficiently describe the entanglement features of many-body
wave-function representations in modern condensed matter
physics.

The great success behind the strong connection and excep-
tional overlap [5] between deep learning and physics may be
buried at a more fundamental level in the laws of physics,
intricately responsible for symmetry, locality, compositionality



and polynomial log-probability. An insight on quantum entan-
glement and its deep connection to tensor network states may
deepen our understanding on symmetry, locality and causality
in quantum physics.

The complexity of quantum systems is dependent on the size
of the state space and grows exponentially with the number of
degrees of freedom, a similar problem to the âcurse of dimen-
sionalityâ found in machine learning. However, new machine
learning methods with versatile abilities have been developed
in order to recognize, classify or characterize datasets and may
be used in the physical scenario under investigation.

Tensor network states have become an important tool in the
study of critical systems and their dynamical features, even
for long range interactions where the quantum correlations
description falls beyond the area-law entanglement [6]. Tensor
networks in general have been quite successful in approximat-
ing quantum states containing exponentially many parameters.
A tensor network is a set of tensors with indices contracted
according to a specific pattern.

Deep learning methods can be used to recognize and
discover patterns in the input data. On the other hand, a
study of entanglement for MPS may help with developing
new deep learning algorithms [7]. Despite all achievements,
there are still many challenges and concerns. For example,
the underlying connection between well-known properties of
classical data and entanglement properties of quantum states
is still elusive.

We are searching for a constructive and close connection
between RBM and MPS methods for quantum many-body
systems and develop an algorithm to translate one language
into another [8]. We here present a constructive connection
between RBM and MPS methods. The entanglement properties
of a many-body quantum system should be revealed by the
dependencies required for performing a deep learning tasks.

There are several tensor networks that describe quantum
many-body states as low-lying eigenstates of specific Hamil-
tonians, from matrix product states (MPS) and projected
entangled pair states (PEPS) [9] to hierarchical structures
like tree tensor networks (TTN) and multiscale entanglement
renormalisation ansatz (MERA).

In particular, matrix product states (MPS) are a kind of a
tensor network where the tensors are arranged in a one di-
mensional geometry, same as tensor train decomposition from
applied mathematics. Tensor networks and MPS share many
common features in their intrinsic mathematical structure. In
a MPS there is one tensor per site in the quantum many-body
system.

MPS can describe any state of the quantum many-body
Hilbert space by increasing sufficiently the value of the bond
dimension. In order to contain all states of the Hilbert space,
the bond dimension size has be exponentially large. However,
for one dimensional critical systems, the bond dimension
diverges polynomially in size.

The Matrix product states (MPS) Ansatz describes ex-
ponentially decaying correlations reflected in the area law

entanglement of the wavefunction and efficiently captures the
ground states of local gapped Hamiltonians.

MPS networks are an efficient tool [10] that has been
successfully applied in many-body physics and it is based
on the main assumption that physically relevant many-body
states do not require a description that scales exponentially
with the system size, but with a polynomial number of
coefficients specified. MPS is widely considered as a key
tool for modelling [11]low-entangled quantum states but also
used successfully to model highly-entangled states, using deep
quantum circuits or high-dimensional physical systems.

MPS method is very successful in describing quantum states
with relatively low entanglement entropy following the area
law. The entanglement area law states that the entanglement
entropy [12] of a system composed of two subsystems will
scale linearly with the size of the boundary separating the two
subsystems. The entanglement entropy is a measure of the
information exchange between the two subsystems.

MPS have been also widely used for modelling time-
evolving 1D systems, with particular applications in cold
atom physics, stochastic modelling and optimization, time-
periodic driving systems or quantum disordered systems. MPS
methods are similar to tensor train decomposition from applied
mathematics. We are interested in finding the general and
optimal conditions for an MPS to efficiently translate into
a specific RBM architecture as an efficient representation of
quantum states.

The general goal here is to establish a proper connection
between RBM and MPS methods in order to describe quantum
states in statistical physics models and machine learning
datasets. An RBM can be trained such that the probability
distribution of the visible units can translate the probability
distribution of the input data. The hidden units in the network
could contain important information with significant physical
meaning that can be used in pattern recognition to generate
new samples from previously learned data.

The search for well defined wavefunctions is a key prob-
lem in quantum many-body physics. Here, the quantum-
mechanical description of a system, including complex prop-
erties such as multi-qubit entanglement becomes mainly a
data-driven problem. Machine learning architectures are able
to identify phases or phase transitions in several condensed
matter Hamiltonians.

Neural networks can be trained to find in raw datasets
interesting order parameters or non-trivial states with no
conventional order. An artificial neural network can be pictured
[13] as a functional mapping of multiple variables that can be
trained. In this way, many concepts and techniques from deep
learning and quantum physics can be efficiently exchanged.
For example, an insight into the entanglement entropy bound
in MPS may quantify a number of complex features in RBM
datasets.

In general, Boltzmann Machines are a particular form of
log-linear Markov Random Field where the energy function is
linear in its free parameters. For complex distributions, some
of the variables are considered as never observed (hidden



Fig. 1. The wavefunction in MPS representation

variables or units). The universal approximation theorem in
machine learning states [14] that there exists an RBM to
accurately describe a dataset if there is no limit on the number
of hidden variables.

The modelling capacity of the Boltzmann Machine increases
with the number of the hidden variables. RBMs further restrict
generic Boltzmann Machines to networks without visible-
visible and hidden-hidden connections. There are only connec-
tions between the visible and hidden units, not within them.

The RBMs are a specific case of energy-based models which
associate a scalar energy to each configuration of the variables
of interest. Learning is translated into modifying the energy
function so that its shape has specific properties.

An energy-based probabilistic model defines a probability
distribution via an energy function with a partition function as
a normalizing factor, in analogy to physical systems [15], [16].
The energy-based model is learnt by performing stochastic
gradient descent on the negative log-likelihood of the input
training data.

The log-likelihood in the logistic regression will have a
loss function as being the negative log-likelihood. The task
is to minimise the loss function, which is done using a
gradient descent algorithm. By contracting the tensor network
associated with the model, the gradient of the loss can be
computed.

II. RBM LEARNING OF MPS NETWORKS

If we want to describe the probability distribution of an
input dataset, based on an existing model, new samples can
be generated from the learned probability distribution. The
data distribution can be described by a quantum state.

In a probabilistic setting, a dataset T can be represented
by a repeated number of binary strings v ∈ V = {0, 1}⊗N .
These strings are mapped to the basis vectors of a Hilbert
space of dimension 2N . If the probability distribution is
described by the wavefunction Ψ(v), the collapse produced by
a measurement will give a final result v = (v1, v2, · · · , vN ).
The probability will be proportional to |Ψ(v)|2.

The quantum wavefunction using MPS is

Ψ(v1, v2, · · · , vN ) =
(
A(1)v1A(2)v2 · · ·A(N)vN

)
, (1)

where each A(k)vk is a Dk−1 by Dk matrix, and D0 = DN

closes the trace.
In Figure 1 the blocks represent tensors while the connected

lines are tensor contractions over virtual indices. The free
vertical legs are physical indices. The number of operations to
be done in order to obtain the final contraction of the tensor
network depends on the order [17] in which the indices are

Fig. 2. The scaling of entanglement entropy in the area law

contracted. This is a significant fact and a difficult problem,
because in tensor network techniques, a great number of
contractions are necessary and one of the goals is to make
these contractions as efficiently as possible.

The variables are divided into two groups v = (vA,vB)
and ρA =

∑
vB

Ψ(vA,vB)Ψ(v′
A,vB) is the reduced density

matrix one of the subsystems.
MPS can represent very efficiently a large number of quan-

tum states [18] and accurately describe the ground states for
one-dimensional gapped local Hamiltonians. The low-energy
eigenstates of gapped Hamiltonians with local interactions
obey the area-law for the entanglement entropy. This means
that the entanglement entropy of a large system tends to
scale, as the size of the boundary of the system and not
as the volume. In general, the low-energy states of realistic
Hamiltonians are constrained by locality so that they must
obey the area law. Figure 2 shows how the entanglement
entropy between two arbirary subsystems A and B scales with
the size of the boundary between the two subsystems.

The Von Neumann entanglement entropy of the quantum
state is S = −(ρA ln ρA). The model probability distribution
can be described as

P(v) =
|Ψ(v)|2

Z
, (2)

where Z =
∑

v∈V |Ψ(v)|2 is the normalization factor.
The RBM consists of a set of visible v = {vi} and hidden

h = {hj} binary variables coupled by the coupling matrix
Wij and satisfying a Boltzmann distribution with the energy
functional

E (v, h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i,j

viWijhj , (3)

While the hidden units interact one with another, there is no
direct interaction between the visible units here.

The number of visible and hidden binary variables are nv
and nh. If the number of hidden units (and interactions, con-
sequently) is increased in the RBM architecture, the network
will contain functions of higher complexity between the visible



units. The biases applied to the visible and hidden units are
ai and bj .

Due to the RBM specific structure, the visible and hidden
variables are conditionally independent given one-another.
If the hidden units are integrated out, the training network
becomes the marginal distribution of the visible variables

ΨRBM (v) =
∑
h

e−E(v,h)

=
∏
i

eaivi
∏
j

(
1 + ebj+

∑
i viWij

)
. (4)

The network is equivalent to a system with N qubits (spin-
1/2 subsystems) described by the local basis states |v⟩, where
v ∈ {0, 1} are the eigenstates of the z-Pauli operator σ̂z |v⟩ =
(−1)v |v⟩. A many-body state of the system is

|Ψ⟩ =
∑
v

Ψ(v) |v⟩ , (5)

where v = (v1, v2, . . . , vN )T ∈ {0, 1}N is a bit string with the
configuration basis state |v⟩ and Ψ(v) the associated complex
amplitude.

After the MPS wavefunction is chosen, the learning process
is done by adjusting the parameters of the wave function
until the distribution becomes as close as possible to the data
distribution. For example, the Maximum Likelihood Estima-
tion algorithm describes a negative log-likelihood function and
optimizes it by adjusting the parameters of the model.

At zero temperature, the quantum many-body problem [19],
[20], [21] performs in two stages: (i) find the ground state
and low-lying excitations of the Hamiltonian Ĥ , and (ii) time-
evolve an initial state associated with the Hamiltonian (time
dependent or not). The As the quantum state possesses 2N

amplitudes Ψ(v), the quantum many-body problem reveals
a ‘curse of dimensionality’. The amplitudes Ψ(v) are repre-
sented by an order-N tensor Ψv1v2···vN . The main idea behind
tensor networks is the decomposition of this tensor Ψv1v2···vN
into a network of lower order tensors.

The network is represented by a graph G where each vertex
ν has an associated tensor T (ν) with a small number of indices,
each of dimension at most χ, with also possible physical
indices vj of dimension 2.

The edges of G describe how the internal legs of every
tensor are contracted. The contraction process represents a
generalisation of the matrix multiplication. A tensor network
decomposition can be represented as

Ψv1v2···vN = tTr
[
⊗ν∈G T

(ν)
]
, (6)

where tTr is the tensor trace performing the contractions of the
internal indices described by G, with N open physical indices
vj . If χ scales exponentially with N , the tensor network
decomposition describes any possible state |Ψ⟩.

The dimension χ of the internal indices describes how
much entanglement can be modelled by the network and it
is illustrated by the entanglement area-law. Even for a small
χ many networks describe efficiently and accurately highly
compressed physical states.

For MPS models, the network essentially retains the same
geometry of the underlying physical system that tries to depict,
for example a chain or lattice. If the system has a coordination
number Z , the network is built from tensors with Z internal
indices and one physical index. The RBM can be translated
into an MPS by representing visible and hidden variables as
physical and virtual units in the same network structure.

The process of tensor network decomposition requires to
variationally minimize the tensor elements, starting with find-
ing the expectation values ⟨ψ| ĥ |ψ⟩, using the product operator
ĥ in the Hamiltonian Ĥ . This demands a contraction of the
tensor network for ⟨ψ| ĥ |ψ⟩. The 1D chain intrinsic geometry
makes possible the exact contraction of an MPS.

A wavefunction of nv physical variables is represented by
the MPS as

ΨMPS(v) = Tr
∏
i

A(i)[vi], (7)

where A(i) is a three-index tensor. For any vi, A(i)[vi] is
represented by a matrix, whose dimension is the virtual bond
dimension of the MPS.

In a computationally efficient description of the quantum
state of a many-body system, the final representation of the
wavefunction in terms of a an MPS depends on a polynomial
number of parameters. If the bond dimension is increased, the
MPS can better describe complex multivariable functions.

The power of an RBM depends on finding an MPS rep-
resentation [22], [23], [24] with the smallest possible bond
dimensions. If the network is split into nv sites containing at
least a visible variable, the contraction of the network for every
site translates into merging all hidden variables. If the bond
dimensions are trivial, then there is no entanglement present
in the wavefunction, and the tensor network state is just a
product state, as in mean field theory.

We introduce a diagonal tensor, Λ
(i)
v or Λ

(j)
h , for every

visible or hidden site and a 2× 2 matrix M (ij) at every bond
that connects each vi to hj

Λ(i)
v = diag (1, eai) , (8)

Λ
(j)
h = diag

(
1, ebj

)
, (9)

M (ij) =

(
1 1
1 eWij

)
. (10)

In this way, an MPS is generated by merging the links
between sites onto virtual bonds. Overall, the MPS will posses
a bond dimension that is fully dependent on the thickness of
the virtual bonds and consequently on the total number of the
merged links. If we have enough information about the MPS
and its entanglement properties, the RBM can be efficiently
generated.

In order to describe the entanglement entropy of the system,
we need to divide its visible variable into two subsystems, X
and Y . The entanglement entropy of a function Ψ between the
two subsystems is

S = −Tr(ρ ln ρ), (11)



where ρ is the reduced density matrix defined by

ρ =
∑
vY

Ψ∗ (v′X , vY ) Ψ (vX , vY ) . (12)

The entanglement entropy describing all the information
from Ψ represents the short range correlations between the
degrees of freedom from X and Y . vY contains all the visible
variables in Y . The entanglement entropy depends only on the
size of the boundary between the subsystems X and Y and it
is bounded by the logarithm of the bond dimension, lnD. If
X and Y are not entangled, the entanglement entropy is zero.
The maximal entanglement entropy between X and Y sites
depends on the bond dimension of the MPS.

On the other hand, the RBM can be described [25], [26]
by the connections between visible units via the hidden units.
The geometrical structure of the hidden variables with respect
to the visible ones is arbitrarily chosen. In analogy with the
MPS method [27], [28], we introduce a boundary between
the visible variables, splitting the system in two sites, X and
Y (= Y1 ∪ Y2). The boundary Y1 contains all visible variables
connected to X , while Y2 contains the rest of the variables.

The RBM function is

ΨRBM (v) = ψ (vX , vY1)ϕ (vY1 , vY2) . (13)

If the visible variables from Y1 are fixed, the RBM is a
direct product of the visible variables from X and Y2. The
entanglement entropy between X and Y is given by the total
number of visible variables at the boundary of Y1, called |Y1|.
The MPS bond dimension becomes D = 2|Y1|.

We can also separate the region X into two sites X = X2∪
X1 containing all variables connected to Y in X1 and the rest
of the variables in X2. The entanglement entropy will be now
bounded by the number of variables in X1 and consequently
by Smax = min(|X1|, |Y1|) ln 2.

Any probability distribution of a N-bit system can be
represented by an MPS as long as its bond dimensions are
free from restrictions. As the bond dimension increases, the
MPS improves its capacity to parametrize more complicated
functions.

For a number of variables m, the entanglement entropy
becomes

Smax ∼ mV (d−1)/d, (14)

where d is the spatial dimension, and V is the volume of the
system.

More generally, the entanglement entropy of an RBM with
sparse degrees of freedom follows the area law, while the en-
tropy for dense RBMs scales with m ∼ V 1/d and consequently
Smax ∼ V grows linearly with the volume. As the number of
parameters for a dense RBM scales polynomially with the full
size of the system, these RBMs can describe highly entangled
quantum states where the area law is not satisfied.

The connecting bond indices (or ancillary indices) describe
the structure of the many-body entanglement in the quantum
state. If the bond dimension is changed, the multiplicative
factor of the area law also changes. If we want to modify

the scaling with the boundary size, the geometric pattern
of the tensor network has to change. The entanglement in
the tensor network is a consequence of both of the bond
dimension and the geometric pattern of the interconnection
between bond indices. The number of the values that any of
the bond indices can take is a measure of the amount of the
quantum correlations encoded in the wavefunction.

The correlation functions of the MPS decay exponentially
with the correlation distance. The correlation length of MPS
states is finite, therefore MPS can’t fully describe the proper-
ties of critical or scale-invariant systems, where the correlation
length diverges.

The condition for an MPS to posses an RBM representation
is that each tensor has the form

Aαβ [v] = LαvRvβ , (15)

where L and R are two 2 x 2 matrices. The product of R and
L is described by the coupling to the hidden RBM variables.
The product RL will take the symmetric form

RL =

(
1

ea/2

)(
1 1
1 eW

)(
1

eb

)
(

1 1
1 eW

)(
1

ea/2

)
. (16)

As an MPS representation has gauge degrees of freedom,
this this makes possible to restrict the tensors with canonical
conditions, with direct benefits on computing an exact partition
function. As an example, the partition function of the statistical
Ising model with si = ±1 Ising spins is

Z =
∑
{si}

exp

K∑
⟨i,j⟩

sisj +H
∑
i

si

 (17)

where K is the coupling constant, H the external field and
the binary variables are defined as vi = (si + 1)/2.

The wavefunction can be complex valued, but here we
restrict it to be real valued. The partition function can be
represented as a summation of the RBM function. In more
physical terms, the RBM amplitudes can be translated into
the effective action for physical spins which is obtained by
tracing out a bath of hidden spin variables.

For the one dimensional Ising case, the partition function
can be represented as an MPS. The matrix product on each
bond is

RL =

(
eK+H e−K

e−K eK−H

)
. (18)

III. CONCLUSION

We studied the close connection between the RBM and MPS
and presented a simple algorithm to transform an RBM into an
MPS. This connection may may open the door into applying
methods developed in quantum physics directly into machine
learning. A condition for finding an RBM representation for
a given MPS was also found, together with an upper bound
on the entanglement entropy of a quantum system modelled
as an parametrized RBM.



We also discussed the equivalence of a number of features
and their entanglement properties for RBM and MPS, quanti-
fying the capacity of RBMs to help with a better understanding
of entanglement theory in the classical setting for quantum
many-body physics.

There is a visible crossover from classically simulable
tensor networks to algorithms requiring a quantum computer
to evaluate. RBM networks already provide good results for
a large set of learning tasks using classical resources, with no
requirement for quantum hardware.

As the matrix product intrinsic structure has the capability
for many operations to be efficiently executed at a classical
level, a bridge between RBMs and MPS models can further
improve and accelerate the algorithmic development of hybrid
quantum/classical subroutines and the use of classical algo-
rithms on quantum computers.
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