
EasyChair Preprint
№ 9522

A Context-Aware Object Detection Method for
Self-Driving Vehicles

Basha Alsahli and Olaa Motwalli

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 3, 2023



A Context-Aware Object Detection Method for Self-

Driving Vehicles 

 
*Basha Falah Alsahli

1

, and Olaa Motwalli 
1 

1

Department of Computing and Informatics, University: Saudi Electronic University, 

Riyadh, Kingdom of Saudi Arabia 
1*b.alsahli@hotmail.com and 1o.motwalli@seu.edu.sa  

* Corresponding Author 

Abstract. Some issues with today's mobility are road accidents, fuel inefficiency, 

traffic congestion, etc., which directly or indirectly affect our economies and 

lives. AVs, also known as self-driving vehicles, can address these issues 

effectively. AVs take leverage from sophisticated sensor technologies. They 

classified perception systems for AVs into two classes: driving environment 

perception and positioning perception systems. In this paper, we addressed the 

driving environment perception problem. AVs need to drive safely through the 

roads. To avoid collisions, they need to identify various objects around them 

accurately. Therefore, we need a method that detects these objects with higher 

accuracy. Recent crashes of Tesla, Toyota, and Google self-driving cars indicate 

that a lot is required in order to make object detection methods for Avs. Hence 

there is massive scope for improvement. In the proposed work, we addressed 

object detection for AVs. The proposed object detection is a multiclass image 

segmentation problem. We used deep learning-based methods. The proposed 

method can be divided into (1) identifying context and (2) using context-based 

models for object detection. For performance evaluation, we used accuracy 

percentage, sensitivity, and specificity. The proposed method showed promising 

results at par with other schemes. The average prediction accuracy for ten 

classical deep-learning image frames is 89.021%. The average prediction 

accuracy for ten image frames of the proposed context-based deep learning model 

is 95.344%. We can see that the proposed context-based deep learning model 

produced 6.323% better accuracy than the base scheme. 

Keywords:  Autonomous Driving, Deep Learning, Object Detection, Context 

awareness, driving scene understanding, h2o. 

1 Introduction 

A critical function of autonomous vehicles (AVs) or self-driving cars is to accurately 

perceive their environment, including lane detection, detection of the navigable path, 

and recognition of static and dynamic objects, such as vehicles, bikes, and humans. 

Some issues with today's mobility are road accidents, fuel inefficiency, traffic 

congestion, etc., which directly or indirectly affect our economies and lives. AVs, also 

known as self-driving vehicles, can address these issues, effectively maintaining the 

highest passenger safety, efficiency, reliability, and sustainability. AVs take leverage 
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from sophisticated sensor technologies [1]. Today the acceptability of AVs has 

increased among the public, particularly in developed economies around the world 

which is a positive sign if we have to see the large-scale success of AVs in the coming 

times [2].  

A significant problem that needs to be handled on which the success of autonomous 

driving depends is that AVs' rides must be free from collisions and accidents. AVs need 

to drive safely through the roads. To avoid crashes, they first need to identify various 

objects around them with utmost certainty. These objects can be (other vehicles, 

obstacles, traffic lights, pedestrians, cyclists, driving spaces, etc.). Therefore, we need 

a method that detects these objects with higher accuracy. Recent crashes of Tesla [3], 

Toyota, and Google [4], Toyota  [5] self-driving cars point out that a lot needs to be 

done to make object detection methods for AVs. Hence there is massive scope for 

improvement, which must be exploited.  

Sensors have a critical function in AVs. With their help, AVs can sense the driving 

environment. This sensed data is further processed by intelligent algorithms whose task 

is to understand various contexts of the driving scene and assist autopilot in making a 

driving decision. These decisions can include reducing speed, turning, reversing, 

putting, and releasing brakes. To make the right driving decisions, two things are 

needed that are (1) accurate data sensing and (2) accurate driving scene prediction 

algorithms. Without quality data sensing, these machine learning-based algorithms do 

not have much worth. Cameras are the most fundamental sensor that is installed on 

AVs. It is an onboard sensor. Cameras are of various types, such as 2D, 3D, infrared, 

etc. The task of these cameras is to record visual data in the form of videos. Today 

various types of sensors are used in AVs to sense multiple data types, as depicted in 

Figure 1. AVs' most common sensors are Cameras, LIDAR, Radar, GPS, IMU, etc. 

Light Detection and Ranging (LIDAR) is a key but costly onboard sensor. It is the core 

of Google's self-driving car. LIDAR uses pulsed laser light to detect objects. Cost, short 

eyesight, and reliability are issues, as their accuracy is questionable in extreme 

conditions such as heavy rainfall, snowfall, storms, etc. However, today LIDAR is a 

much more powerful sensor than it was initially. Radar is a sensor that is preferred by 

Tesla self-driving cars over LIDAR. It is not expensive as LIDAR and has better, more 

extended eyesight and accuracy in extreme driving conditions. Radar uses radio waves 

to detect objects. However, detection accuracy at the corner is not as good as Lidar's. 

Other popular choices of sensors in AVs are the Inertial measurement unit (IMU), 

Global Positioning System (GPS), and Odometer. IMU sensors can measure several 

critical parameters related to angular rate, velocity, force, and acceleration and play a 

vital role in ensuring safe driving. GPS utilizes satellite data (longitude, latitude, speed, 

and direction) to navigate. The functions of IMU and GPS are fused to provide a safe 

driving experience. 

Further Odometer is used to measure the speed of the AV. See (Y. Li & Ibanez-

Guzman, 2020), (Dickmann et al., 2016), (Ertugrul & Ulkir, 2020), (Rahiman & Zainal, 

2013), (Kutila et al., 2015), (Haltakov et al., 2012) for detailed explanation on various 

types of sensors used in AVs. AVs today are equipped with several sensors such as 

cameras, Lidar, Radar, GPS, etc. Particularly for driving scene understanding, AVs are 

using a fusion of cameras, Lidar, and Radar to make autonomous driving technologies. 

This multi-sensor requirement of AVs has a few drawbacks. Firstly, it increases the cost 

of the vehicles. Secondly, it increases the system's complexity. Knight (Knight, 2015) 
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discusses how the technology industry now focuses on designing power single sensor 

perception technologies. In a demonstration showing how quickly some of the 

technology is advancing, Magna, a company that supplies components to most large 

carmakers, recently indicated that it can make a car drive itself on the highway using 

just a single camera embedded in its windshield. Magna hasn't said how much the 

technology would cost carmakers, but vehicle camera systems tend to cost hundreds of 

dollars rather than thousands. In Figure 1, we depicted various types of technologies 

needed for the proper function of AVs. Perception technologies are the most sensitive 

and vital technologies we still have to get proficient in. Further, we can classify 

perception systems for AVs into two classes: driving environment perception and 

positioning perception systems (J. Zhao et al., 2018). In this work, we will address the 

driving environment perception problem. 

 

 

The rationale behind the proposed work is that if we want to replace human-driven 

vehicles with AVs, and driverless vehicles, we need to make the autonomous driving 

experience safer and hassle-free. 

In the proposed work, we tried to address the problem of making autonomous driving 

collision-free and smooth. The primary challenge to this problem is to correctly identify 

various kinds of objects in a driving scene with high accuracy. To address this problem, 

we consider that context-awareness can help enhance object detection accuracy for 

AVs. 

 

1.1 Contributions and Hypothesis 

The contribution of the proposed work are: 

 

• To critically review the existing literature concerning object detection for AVs 

to make the reader understand the current state-of-the-art. 

Figure 1. Various types of technologies needed for autonomous vehicles. 
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• To propose a novel context-aware object detection method to produce higher 

prediction accuracy for safe and smooth driving. 

 

• To design lightweight object detection methods through context awareness.  

 

The hypothesis or the research question related to the proposed method is whether we 

can improve prediction accuracy by using a context-aware object detection method. 

The proposed object detection is a multiclass image segmentation problem and can be 

divided into phases. Firstly, we will download the dataset from the KITTI dataset 

repository for AVs. The next step is to label the data. Further, we will divide the dataset 

into training and testing. Then we will use machine and deep learning-based methods. 

One important thing about using a context-based model is that we do not need to train 

deep learning models on massive datasets. Instead, we will only train the model on 

more minor (context-specific data). Thus, our model will be lightweight because it will 

take less training and loading time. The brief details of the two phases are given below 

and later explained comprehensively in the methodology sections. 

• In Phase-I, we will identify the context. By context, we are driving conditions, 

i.e., morning, night, extreme sunlight, shadow, etc., using a machine learning 

algorithm.  

 

• In Phase II, once we have identified the context, we will use a context-specific 

lightweight deep learning model to detect various objects in the driving scene. 

 

The paper is divided into five sections. In Section 2, we reviewed the kinds of literature 

on related topics. In Section 3, we will comprehensively explain the methodology of 

the proposed work. Whereas in Section 4, we will critically discuss the results and 

findings. Finally, in Section 5, we will give concluding remarks about the proposed 

work, its importance, its effects, and future recommendations. 

2 Literature Review 

Autonomous driving will play a significant role in the future, especially when we talk 

about high-level automation in smart cities, where most of our daily things will be 

automated [6]. However, today we need intelligent methods to perceive the driving 

environment with utmost certainty. Some challenging problems are object detection, 

trajectory prediction, collision avoidance, and traffic congestion avoidance are 

significant issues related to autonomous driving. The proposed work will address the 

critical object detection problem for autonomous driving. The initial problem is 

identifying various objects in the driving scene, known as object detection.  

An object can be road, lane, pedestrians, cyclists, obstacles, vehicles, traffic signs, trees, 

animals, etc. The problem of object detection is challenging as the number of objects 

grows in the driving scene, making it harder for the classifier to predict accurately. 

Arnold et al. [7]. They performed a comprehensive survey on 2D and 3D object 
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detection methods for autonomous vehicles. They review various machine learning 

techniques and their practical use in this field. An exciting work by Haris and Glowacz 

compared different object detection methods for AVs has been done in [8].  

Machine learning and deep learning are at the forefront of detecting diverse objects in 

a driving scene. Classifiers such as Random Forest, Support Vector Machine (SVM), 

Decision Trees, and Ensembles are widely used for this problem [9]. Uçar et al. 

proposed an object detection method for Avs, a hybridization of CNN and SVM-based 

[10]. Further feature extraction is used to enhance the accuracy of prediction. One major 

challenge for autonomous driving is to drive safely in extreme weather conditions such 

as storms, snowfall, rain, sand storm, fog, etc. The accuracy of object detection systems 

decreases. To address this challenge, Walambe et al. [5] proposed an Ensemble-based 

machine-learning method for object detection in a driving scene to perform object 

detection in extreme weather conditions. Similarly, Masmoudi et al. [11] also proposed 

an SVM-based objection method for severe weather conditions. 

Today Deep Learning algorithms are breaking all prediction records. They can 

understand complex and nonlinear data better than conventional machine learning 

algorithms. Due to these qualities, today, used in every field, from autonomous driving 

[12]  to healthcare [13]. Fujiyoshi et al. [14]  proposed a deep learning-based object 

recognition for autonomous driving using Convolutional Neural Network (CNN). 

Duhayyim et al. [15] presented robust deep learning (DL)-enabled object detection and 

classification (RDL-ODC) method with a particular focus on occluded or truncated 

objects. 

Further, Park et al. [16] proposed a CNN-based object detection method that used 

fused data from cameras and Lidar. This work also tells about a new direction where 

researchers use data fusion techniques for object detection. Road and lane detection is 

a critical part of autonomous driving and can be seen as road detection's sub-problems. 

It becomes even more challenging in the absence of location information and on 

unstructured roads. We have witnessed machine learning algorithms used to detect 

lanes in recent years, but they failed to produce high efficiency and accuracy. Alam et 

al. [17] proposed TAAWUN, a novel road detection method that uses decision fusion 

and problem-specific feature selection based on deep learning and information sharing 

among nearby AVs. Vehicle detection is one of the most fundamental problems for 

AVs.  

Another very challenging problem is Pedestrian and Cyclist detection, one of the most 

complex problems for a computer scientist in autonomous driving. The major problem, 

as identified by Ahmed et al. [18], with pedestrians and cyclists is that dynamic and 

sudden trajectory changes are too common and complex to predict due to their 

dependency on the intent of the individual pedestrian and cyclists. Further, cyclists are 

very thin objects, often looking like pedestrians and obstacles. Wang and Zhou  [19] 

proposed a fast CNN-based pedestrian detection method using Beijing's urban traffic 

dataset. At the same time, Annapareddy et al. [20]  used infrared cameras rather than 

typical cameras to map heat signatures can detect pedestrians, even in scenarios that are 

hard to identify. Ahmed et al. [21] used a novel data fusion method to detect pedestrians 

and cyclists based on Deep Neural Networks (DNNs).  
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Demers et al. [22] a moving vehicle in full-motion video. The researchers focused on 

increasing the chances of tracking and detection even in congested urban areas. They 

combined detection outputs from different spectral bands and related features to reduce 

false alarms. The authors used a GMM model for background pixel identification, 

which was then used for vehicle identification. The authors combined the components 

extracted from each spectral band to form a multi-spectral target region. The discovered 

target candidates were linked to targets from a tracking database by matching 

relationships between constructs from scale-invariant component changes. 

Aytekin et al. [23] suggested investigating the importance of monochrome images 

collected with a single camera for vehicle detection and tracking. They focused on 

locating and tracking the vehicle during daylight hours, using data collected from 

within the car. They used vehicle shadow signals and related edge information to 

identify in practice quickly. They also included a lane detection model to address the 

issue of incorrect detection. After the road lanes are detected, the presence of a vehicle 

within the road area is estimated using the "shadow" as an indication. The authors used 

vertical edges to verify their approximate vehicle placement. The Kalman filter was 

used to monitor the detected features (from the vehicle area). 

To extract the most moving objects, Kiratiratanapruk et al. [24] developed a 

background subtraction model using edge information. Boundary information was 

more resistant to illumination variations and required fewer computational resources 

than intensity-based background models. This allowed him to develop a method that 

could be used in real-time. Zhang et al. [25] suggested a cascade classifier ensemble-

based classification model that is both robust and efficient. The first ensemble used in 

their model was heterogeneous, consisting of various classifiers such as kNN, Multiple-

Layer Perceptrons (MLPs), SVM, and random forest. The classification was improved 

further in the second classifier ensemble, which consists of a collection of base MLPs 

synchronized using an ensemble meta-learning method called Rotation Forest (RF). 

The rejection option was retrieved for both ensembles in their model by connecting the 

degree of consensus from the voting majority to confidence estimations. To the best of 

our knowledge 

3 Proposed Methodology 

AVs need to drive safely through the roads. To avoid collisions, they must identify 

various objects around them with utmost certainty. These objects can be (other vehicles, 

obstacles, traffic lights, pedestrians, cyclists, driving spaces, etc.). Therefore we need a 

method that detects these objects with higher accuracies. Recent crashes of Tesla, 

Toyota, and Google self-driving cars point out that a lot needed to be done to make 

object detection methods for Avs. Hence there is massive scope for improvement, 

which must be exploited.  

In this work, we proposed an object detection method for autonomous vehicles. It is 

a multiclass problem where the proposed method will classify between four types of 

objects: drivable area, other vehicles, lanes markings, and background (footpath, shops, 

obstacles, trees, etc.). The proposed method will consist of two phases. In Phase-I, we 
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will classify the context. Here context can be anything (day, night, shadow, extreme 

light, rain, snowfall, sand storm, etc.). In the proposed method, we are taking 3 contexts 

which are: (1) dark conditions, (2) extreme light conditions, and (3) normal conditions. 

We trained a deep learning model to predict contexts using the grey-scale image to 

reduce computation at this phase. In Phase II, we use a model trained to detect objects 

specific to a particular context. 

One important thing about using a context-based model is that we do not need to 

train deep learning models on massive datasets. Instead, we will only train the model 

on more minor (context-specific data). Thus our model will be lightweight because it 

will take less training time and loading time. So for each context, we have a separate 

object prediction model in the proceeding sub-sections. There are three classes we are 

predicting using the proposed context-based deep learning method, which: road class 

(R), lane marking class (L), and other object class (O), which includes footpaths, 

obstacles, traffic signs, traffic lights, vehicles, etc. It is an image segmentation problem. 

 

3.1 Experimental Setup 

For the validation of the proposed method, we used R programming platform. We used 

R packages such as for deep learning, we used the H2O package [26], for data 

visualization, we used ggplot2  [27] and cowplot [28] or results evaluation, we used 

caret package [29]. We used i7 system with 1TB  hard drive, 16 GB RAM. 

 

3.2 Data Preparation 

We used the KITTI autonomous driving image dataset [30]. Every colored image is of 

size 1242 x 375 pixels. We create a dataset with nine attributes: r, g, b, x, y, h, s, v, e, 

and class. We used the Raster package [31] in R, to compute pixel values and the 

location of each pixel in the image frame. 

Our dataset contains 13.902 million rows, so there is hardly any question of 

underfitting. However, we use parameter stopping metric for overfitting during the 

model training. We stop the model training as overfitting start. Overfitting is identified 

when the model stops converging, and accuracy starts to constant or decrease. So 

stopping the metric parameter helped us to avoid any kind of overfitting.  

One of the most challenging parts was how to run on this much data our method as 

we have only 16 GB RAM. It was a tricky thing to manage. So, we used our RAM very 

cleverly. For example, we deleted unwanted variables once their use was over in the 

code using the rm() command. We only kept variables that are in use in RAM. Through 

this, we were able to manage RAM efficiently. 

We compared the proposed method with the classical deep learning method. We 

cannot compare the proposed method with any other research paper directly because 

we do not know which image frames they used, and it is impossible to get the code for 

their method. 
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3.3 Proposed Method 

In Figure 2. We have stated the block diagram of the proposed model. Later in the 

coming sections, we will use a multilayer perceptron (MLP), a feed-forward artificial 

neural network model that maps input data sets to appropriate outputs [26]. This is also 

called a fully-connected feed-forward ANN. An MLP consists of multiple layers of 

nodes in a directed graph, with each layer fully connected to the next one.  

    Each node is a neuron (or processing element) with a nonlinear activation function, 

except for the input nodes. MLP utilizes a supervised learning technique called 

backpropagation for training the network. MLP modifies the standard linear perceptron 

and can distinguish data that are not linearly separable. Table 1 mentions some of the 

critical parameters configuration for the deep learning models. We need to classify 

three classes which include road class (R), lane marking class (L), and other object class 

(O). 

Table 1. Some important deep learning parameters configuration for deep learning models. 

No. Parameter Value 

1. Epochs 40 

2. Activation  function Tanh 

3. Hidden layers 2 

4. Neurons in hidden layers C(32,32) 

5. Balance classes True 

6. Rho 0.99 

7. momentum_start 0.0 

8. L1 regularization 0.0 

9. L2 regularization 0.0 

10. Rate 0.005 

 

 
Figure 2. Proposed Method. 
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4 Results 

For the performance evaluation of the proposed method, we used performance 

measurement benchmarks given by (Sokolova & Lapalme, 2009): prediction accuracy, 

sensitivity, and specificity. Sokolova and Lapalme analyzed 24 performance measures 

used in the Machine Learning classification tasks, including binary, multiclass, multi-

labeled, and hierarchical. In this work, we are dealing with a multiclass prediction 

problem. We selected prediction accuracy, sensitivity, and specificity.  

A confusion matrix is a table that shows actual versus predicted data labels. The sum 

of the diagonal (SoD) of the confusion matrix represents the correctly classified data 

label, thus can be used to compute classifier accuracy too as depicted in Figure 3, the 

equation which can be given as: 

 

                Accuracy% = (SoD/ Sum of all cells of confusion matrix)*100 

 

 
Figure 3. Sample Confusion Matrix. 

 

We compared the classical deep learning model with the proposed context-based 

deep learning model. The average prediction accuracy for ten classical deep-learning 

image frames is 89.021%. The average prediction accuracy for ten image frames of the 

proposed context-based deep learning model is 95.344%. We can see that the proposed 

context-based deep learning model produced 6.323% better accuracy than the base 

scheme, as depicted in Figure 4. This proves that a context-based approach can improve 

object detection accuracy for AVs. 

Sensitivity can be defined as the proportion of actual class labels correctly predicted 

by the classifier. In contrast, specificity is the ability of the classifier to identify negative 

results. Important terms used to calculate sensitivity and specificity are the number of 

true positives (TP), number of true negatives (TN), number of false-positive (FP), and 

number of false negatives (FN), respectively. 

The proposed context-based method produced average sensitivity for ten image 

frames for class O of 0.9892, class L of 0.7184, and class R of 9226. The same is 

depicted in Figure 5. Further, in terms of specificity proposed context-based method 

proved average sensitivity for ten image frames for class O of 0.9113, for class L of 

0.9817, and class R of 9889. The same is depicted in Figure 6. 
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Figure 5. Sensitivity of the proposed method. 

 

 

 
Figure 6. Specificity of the proposed method. 

Figure 4. Prediction accuracy. 
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5 Conclusion 

In this paper, we addressed the driving environment perception problem. AVs need 

to drive safely through the roads. To avoid collisions, they need to identify various 

objects around them accurately. These objects can be (other vehicles, obstacles, traffic 

lights, pedestrians, cyclists, driving spaces, etc.). Therefore, we need a method that 

detects these objects with higher accuracy. Recent crashes of Tesla, Toyota, and Google 

self-driving cars point out that a lot needed to be done to make object detection methods 

for Avs. Hence there is massive scope for improvement, which must be exploited. In 

this paper, we addressed object detection for AVs. The proposed object detection is a 

multiclass image segmentation problem. We used deep learning-based methods. The 

proposed method can be divided into (1) the identification of context and (2) using 

context-based models for object detection. For performance evaluation, we used 

accuracy percentage, sensitivity, and specificity. The proposed method showed 

promising results at par with other schemes. Our results clearly show that the proposed 

context-based deep learning model produced 6.323% better accuracy than the base 

scheme. This proves that a context-based approach can improve object detection 

accuracy for AVs. In the future, we want to work extensively on object detection 

problems to make predictions faster. Also, in this work, we have a computation power 

limitation that we need to overcome by using a supercomputer in our subsequent work. 
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