
EasyChair Preprint
№ 1680

An End-to-End solution to Autonomous Driving
based on Xilinx FPGA

Tianze Wu, Weiyi Liu and Yongwei Jin

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 16, 2019



An End-to-End solution to Autonomous Driving
based on Xilinx FPGA

1st Tianze Wu
Insititute Of Computing Technology Chinese Academy Of Sciences

University of Chinese Academy of Sciences
Beijing, China

wutianze@ict.ac.cn

2nd Weiyi Liu
Shanghai JiaoTong University

Shanghai, China
liuweiyi@sjtu.edu.cn

3rd Yongwei Jin
Xidian University

Xian, China
yongweijin@outlook.com

Abstract—Nowadays, the autonomous driving topic is very hot,
many people are trying to provide a solution to this problem. This
time we build our own auto-driving car based on Xilinx Pynq-
Z2, it provides an end-to-end solution which inputs images from
camera and outputs control instructions directly. The platform
also uses the power of Deep learning Processing Unit(DPU) to
accelerate the inference process and provides a simulator for
training and testing in virtual environment. If the car meets some
situations which cannot be handled by AI model, it’s easy to add
extra traditional computer vision functions to our control system.
So our platform can help people who want to try autonomous
driving build their own model and test it efficiently. We hope
that our platform can be easy to use and extend.

Index Terms—Autonomous Driving, Machine Learning, Pynq-
Z2, Field programmable gate arrays, Deep Learning Processing
Unit

I. INTRODUCTION

Autonomous Driving is getting more and more attention
recently. The main problem to be solved in this area is how to
meet the need of real-time computing. Though we now have
many customed chips like GPU [1] and TPU [2] for machine
learning acceleration, they are not able to provide both high
performance and low power consumption. Also they are not
flexible enough to adapt to different scenes.

To meet these requests, FPGA [3] is a good solution since
it can provide high performance and low power consumption,
most important, people can build accelerators for specified
algorithms easily.

This time we build our own auto-driving car based on Xilinx
Pynq-Z2 [4], it provides an end-to-end solution to autonomous
driving and it uses the power of DPU [5] to accelerate the
computing. Our goal is to build a general and easy-to-use
platform for those who want to try their own ideas about auto-
driving.

We find that in previous FPT competitions [6], many com-
petitors use traditional computer vision methods or machine
learning methods to detect objects and then make decisions
based on the results [7] [8]. Our solution is quite different from
theirs since we use a simple CNN model as our AI network
and feed the model with pictures taken by the camera in the
car and the model returns the control orders. The platform we
use is Xilinx’s Pynq-Z2 board, there is a DPU IP in its FPGA,
with DPU’s help, we can accelerate the inference process of

the model and make it possible to run AI inference task in
limited resource platform like Pynq-Z2.

We also build a simulator based on sdsandbox [9] using
Unity3d [10], we can collect training data, test the model’s
performance and pre-train the model in the simulator. It
highly increases the efficiency and accelerates the project
development.

The rest of this paper is organized as follows. Section
II describes the overview of our hardware structure and
development environment. Section III presents the software
architecture and details of methods we are going to use for the
competition. Finally, the paper mentions the current progress
and makes an conclusion.

II. OVERVIEW OF OUR CAR

A. Hardware structure

The Fig. 1 is our robot car’s photograph. Its body is made of
acrylic board. There is one Pynq-Z2 board as the controller,
it has a DPU IP for acceleration, the sensors we use now
contains a camera only. The car has one capstan motor and
one electric steering engine. Two rear wheels provide power
while two front wheels provide steering capacity. We use two
batteries to provide power, one for the Pynq board and one
for the motors.

B. Development environment

The operating system we use in the car is created by
PetaLinux [11], it has opencv and dpu support. We control the
motors by directly writing values to physical memory address
of FPGA, the drivers are implemented in FPGA. Most of our
AI inference computing tasks are run by DPU, the tasks which
DPU doesn’t support are run by arm core embedded in Pynq-
Z2. The driving decisions are made by AI model while the
central controller is run in arm core.

We provide two language implementations for collect-data
module, you can collect data for training in c++ or python
environment. The c++ version is more commonly used while
the python version has a good support in Pynq-Z2. The auto-
run module is implemented in c++ since the DNNDK-v3.0
[12] version has only APIs for c++ language.



Fig. 1. Car overview.

III. SOFTWARE IMPLEMENTATION AND ALGORITHMS

In most tasks, our solution can completely rely on machine
learning methods, such as left-side driving, obstacle avoidance
and crossroad driving. When it comes to other scenes, we use
traditional computer vision algorithms and state machine to
help us finish the task. The car only uses a camera as the
sensor now, we may add some more sensors if a camera is
not enough.

A. Software architecture

In our design, we aim to make the platform be easy to use
and expand. There are three main modules in our system.

• The first part is Data Collect module. It needs human to
control the car to finish some driving tasks. The program
will record the images taken and real-time commands
during the process. These data will be used as training
data.

• The second part is PC Host module. Since our edge
devices cannot provide huge compution power, we will
use more powerful devices like normal computers to do
the machine learning job. You can use any hardware you
like to do the training and then use DNNDK provided
by Xilinx to do some optimizations. DNNDK kit can
do pruning, quantization, compilation and optimization
to the trained model. After this step, we will have DPU
kernels that can help us accelerate inference process in
the car.

• The third part is Autonomous Driving module, it acts
like the first module but the human controller of the car
is replaced by machine learning network.

Since these three parts are separated, so it’s easy to modify
one module without affecting others. It will be easy to build
a different neural network or use different hardware devices.
We are also working on an virtual simulator for our platform,
once it is finished you can train or evaluate the model based

on virtual environment. This can help people build or test their
model structure efficiently.

Fig. 2. Software Architecture

B. Work flow

Fig. 3 shows the control flow of our autonomous driving.
The car can run in two mode, one is that the car will be in total
control of machine learning methods, the other means that the
traditional computer vision methods will be used when the car
runs into the situation in which neural network is not able to
handle.

The whole system will have one worker for running com-
puter vision methods like objects recognition, one for taking
photos and one for delivering instructions. The number of the
workers for machine learning tasks can be specified since it’s
meaningful to run parallel tasks in DPU.

Fig. 3. Work Flow

C. AI model

The network we use is a simple end-to-end model. Since
the DNNDK kit doesn’t support some AI functions, we adapt



Fig. 4. Model Structure.

our model to DNNDK. The structure of the model is shown
in Fig. 4.

The main part of the model is CNN layers, they can extract
features from the images taken by the car’s front camera. Some
fully connected layers follow the CNN layers, they can finally
extract the command information needed for auto-driving. The
activation function we use is Relu because it works well and
can be accelerated by DPU. The last layer is a Softmax layer,
it can provide classification and normalization functions for
the model.

Although the current model is not the perfect one and
it cannot be accelerated by DPU totally, it’s easy to make
changes and optimizations to the model. With the development
of DNNDK, more portion of the model can be accelerated and
the whole system can be more efficient and powerful.

D. Simulator

Now we have built a simulator based on sdsandbox [13] to
collect data for training, and we can also test our model using
the simulator. With this tool, we can further separate software
part from hardware part, even you don’t have a real car, you
can build and test your model in the virtual environment. The
interface of our simulator is shown in Fig. 5.

The main part of the model is CNN layers, they can extract
features from the images taken by the car’s front camera. Some

Fig. 5. Simulator Interface.

fully connected layers follow the CNN layers, they can finally
extract the command information needed for auto-driving. The
activation function we use is Relu because it works well and
can be accelerated by DPU. The last layer is a Softmax layer,
it can provide classification and normalization functions for
the model.

Although the current model is not the perfect one and
it cannot be accelerated by DPU totally, it’s easy to make
changes and optimizations to the model. With the development
of DNNDK, more portion of the model can be accelerated and
the whole system can be more efficient and powerful.

E. Algorithms

• Crossroad control.
Since the AI model cannot handle the situation when the
car meets a crossroad. We will help the car decide which
direction to take according to the competition’s request.
The car will use neural network or cv algorithms to
recognize all the scenes that need it to make a choice, for
example the crossroad. After the car meets these scenes,
first the main controller will tell the car which direction to
take, then the car will use predefined control commands
to drive through the crossroad. When this progress is
finished, the AI model will retake the control of the car.

• Image process.
Although our solution is end-to-end, the training data
needs to be processed. Now we just do the normalization
to the input images, later we will try some more according
to the evaluation of the model’s performance.

• Obstacle avoidance.
For obstacle avoidance, traditional methods will first
recognize the objects from the image and then use the
state machine functions to make decisions. Our solution is
quite different from it, we will add the obstacle avoidance
scenes to the step of collecting training data. As a result,
when the training step is finished, the AI model can avoid
the obstacle automatically.

• Road lane detection.
To detect road lane, we first use 5*5 Gaussian filter
to remove the noise of the image. Then Canny edge
detection [14] is applied to detect the edges of the image.
Hough transform [15] is employed to detect the lines of



the image. Based on the orientation and relative position
of detected lines, side line and stop line of the road can
be identified.
To improve the robustness and accuracy of the algorithm,
more techniques will be added to the algorithm, such as
K-Means clustering [16] for Hough lines, Kalman/Gabor
filtering for sampled data, alternative IPM (inverse per-
spective mapping) lane detection method [17].
Road lane detection algorithm is implemented in C++
with OpenCV. And it can be very time consuming running
in ARM Cortex-A9 in Xilinx PYNQ-Z2. Some measures
are taken to alleviate the heavy computational task of
the algorithm. Firstly, the images captured by camera are
cropped and down-sampled to reduce the computation
complexity. Some time consuming tasks such as Gaussian
filter, Canny edge detection, Hough transform are moved
to FPGA using Xilinx xfopencv library [18].

• Traffic light recognition.
To recognize the traffic light in the contest, we first
use IHLS color space [19] to remove the disturbance
of the color in complicated background. After obtaining
the color information, Hough circle transform [20] is
applied to get the shape information of the traffic light.
Combing the shape and color information, traffic light
or similar objects can be detected. Finally, a simple BP
neural network is employed to accurately recognize the
traffic light in the contest.
Traffic light recognition algorithm is implemented in C++
with OpenCV. Similarly, it can be very time consuming
running in ARM Cortex-A9 in Xilinx PYNQ-Z2. To re-
duce computation complexity, images captured by camera
can be cropped as well since the traffic light only appear
in the upper half of the image. Hough circle transform can
be implemented in FPGA using Xilinx xfopencv library
and BP neural network can be implemented in FPGA
using Xilinx Vivado HLS.

IV. DEVELOPMENT STATUS

Until now, we have built the whole system, the AI model
works well in simple scenes in virtual environment. We
are busy implementing the cv functions and optimizing the
hardware structure of the car. Later we will try to make
some improvements to the model and do some tests and
modifications according to the competition’s rules.

V. CONCLUSION

The DPU embedded in FPGA accelerates the inference
progress of AI algorithms. Our team wants to use this great
power to build an autonomous driving system, with the help
of Xilinx’s Pynq-Z2 and DNNDK, our project will provide
people with a new version of end-to-end autonomous driving
solution.

We will focus on the stability of the system and the
cooperations between AI network and traditional methods in
the next step.

ACKNOWLEDGMENT

The project is supported by Xilinx and Institute of Comput-
ing Technology Chinese Academy Of Science.

REFERENCES

[1] Nurvitadhi, E., Sheffield, D., Sim, J., Mishra, A., Venkatesh, G., &
Marr, D. (2016, December). Accelerating binarized neural networks:
Comparison of FPGA, CPU, GPU, and ASIC. In 2016 International
Conference on Field-Programmable Technology (FPT) (pp. 77-84).
IEEE.

[2] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa,
R., ... & Boyle, R. (2017, June). In-datacenter performance analysis of
a tensor processing unit. In 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA) (pp. 1-12). IEEE.

[3] Mahajan, Divya, et al. ”Tabla: A unified template-based framework
for accelerating statistical machine learning.” 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2016.

[4] TUL PYNQ-Z2 [ONLINE] Available at:
http://www.tul.com.tw/ProductsPYNQ-Z2.html

[5] TUL DPU [ONLINE] Available at:
https://www.xilinx.com/support/documentation/
ip documentation/dpu/v3 0/pg338-dpu.pdf

[6] An FPGA design competition for developing autonomous
driving robot cars is held in FPT2019 [ONLINE] Available
at: http://fpt19.tju.edu.cn/Contest/FPT2019 FPGA Design
Competition/Contents and Conditions.htm

[7] Kojima, A., & Nose, Y. (2018, December). Development of an Au-
tonomous Driving Robot Car Using FPGA. In 2018 International
Conference on Field-Programmable Technology (FPT) (pp. 411-414).
IEEE.

[8] Aoto, M., Wada, Y., & Numata, Y. (2018, December). Development of
an FPGA Controlled” Mini-Car” Toward Autonomous Driving. In 2018
International Conference on Field-Programmable Technology (FPT) (pp.
400-402). IEEE.

[9] Tawn Kramer. (2019, September) [ONLINE] Available at:
https://github.com/tawnkramer/sdsandbox

[10] TUL Unity3d Available at: https://unity.com/learn
[11] TUL PetaLinux [ONLINE] Available at:

https://www.xilinx.com/support/documentation/sw manuals/xilinx2019
1/ug1144-petalinux-tools-reference-guide.pdf

[12] TUL DNNDK [ONLINE] Available at:
https://www.xilinx.com/support/documentation/sw manuals/ai inference
/v1 5

[13] Tawn Kramer, sdsandbox [ONLINE] Available at:
https://github.com/tawnkramer/sdsandbox

[14] John Canny, ”A Computational Approach to Edge Detection, ”IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp.679-698,
1986.

[15] J. B. Burns, A. R. Hanson and E. M. Riseman, ”Extracting Straight
Lines,” in IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. PAMI-8, no. 4, pp. 425-455, July 1986.

[16] S. Selim, M. Ismail, ”K-Means-Type Algorithms: A Generalized Con-
vergence Theorem and Characterization of Local Optimality,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 6, no. 1,
pp. 81-87, 1984.

[17] Jun Wang, Tao Mei, Bin Kong and Hu Wei, ”An approach of lane
detection based on Inverse Perspective Mapping,” 17th International
IEEE Conference on Intelligent Transportation Systems (ITSC), Qing-
dao, 2014, pp. 35-38.

[18] Xilinx. (2019, Sep) Xilinx/xfopencv. [Online]. Available:
https://github.com/Xilinx/xfopencv

[19] Allan Hanbury and Jean Serra, ”A 3d-polar coordinate colour representa-
tion well adapted to image analysis,” in Proceedings of the Scandinavian
Conference on Image Analysis (SCIA), 2003, pp. 804–811.

[20] M. Rizon et al., 2005, ”Object Detection using Circular Hough Trans-
form”, American Journal of Applied Sciences 2, vol 12, pp. 1606-1609.


