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Abstract. We present a reasoning framework in support of software
quality ensurance, allowing us to automatically verify the functional cor-
rectness of programs with recursive data structures. Specifically, we focus
on functional programs implementing sorting algorithms. We formalize
the semantics of recursive programs in many-sorted first-order logic while
introducing sortedness/permutation properties as part of our first-order
formalization. Rather than focusing on sorting lists of elements of spe-
cific first-order theories such as integer arithmetic, our list formalization
relies on a sort parameter abstracting (arithmetic) theories and, hence,
concrete sorts. Software validation is powered by automated theorem
proving: we adjust recent efforts for automating inductive reasoning in
saturation-based first-order theorem proving. Importantly, we advocate
a compositional reasoning approach for fully automating the verification
of functional programs implementing and preserving sorting and per-
mutation properties over parameterized list structures. We showcase the
applicability of our framework over recursive sorting algorithms, includ-
ing Mergesort and Quicksort; to this end, we turn first-order theorem
proving into an automated verification engine by guiding automated in-
ductive reasoning with manual proof splits.

1 Introduction

Sorting algorithms are integrated parts of any modern programming language
and, thus, ubiquitous in computing. Ensuring software quality thus naturally
triggers the demand of validating the functional correctness of sorting routines.
Such routines typically implement recursive/iterative operations over unbounded
data structures, for instance lists or arrays, combined with arithmetic manipula-
tions of numeric data types, such as naturals, integers or reals. Automating the
formal verification of sorting routines therefore brings the challenge of automat-
ing recursive/inductive reasoning in extensions and combinations of first-order
theories, while also addressing the reasoning burden arising from design choices
made for the purpose of efficient sorting. Most notably, Quicksort [8] is known
to be easily implemented when making use of recursive function calls, for ex-
ample, as given in Figure 1, whereas procedural implementations of Quicksort
require additional recursive data structures such as stacks. While Quicksort and
other sorting routines have been proven correct by means of manual efforts [5],
proof assistants [17], abstract interpreters [6], or model checkers [9], to the best
of our knowledge such correctness proofs so far have not been fully automated.



1 datatype a’ list = nil | cons(a’, (a’ list))
2
3 quicksort :: a’ list → a’ list
4 quicksort(nil) = nil
5 quicksort(cons(x, xs)) =
6 append(
7 quicksort(filter<(x, xs)) ,
8 cons(x, quicksort(filter≥(x, xs))))
9

10 append :: a’ list → a’ list → a’ list
11 append(nil, xs) = xs
12 append(cons(x, xs), ys) = cons(x, append(xs, ys))

Fig. 1: Recursive functional algorithm of Quicksort, using the recursive function
definitions append, filter< and filter≥ over lists of sort a. The datatype list
is inductively defined by the list constructors nil and cons. Here, xs, ys denote
lists whose elements are of sort a, whereas x is a list element of sort a. The
append function concatenates two lists. The filter< and filter≥ functions
return lists of elements y of xs such that y < x and y ≥ x, respectively.

In this paper we aim to verify the partial correctness of functional programs with
recursive data structures, in a fully automated manner by using first-order theo-
rem proving. The crux of our approach is a compositional reasoning setting based
on superposition-based first-order theorem proving [12] with native support for
induction [7] and first-order theories of recursively defined data types [11]. We
extend this setting to support the first-order theory of list data structures pa-
rameterized by an abstract background theory/sort a and induction on recursive
function calls - computation induction. We thus introduce a software reasoning
framework that integrates the automation of induction with first-order theorem
proving. Our framework allows us to automatically discharge verification con-
ditions of sorting/permutation programs, without requiring manually proven or
a priori given loop invariants. In particular, we automatically derive induction
axioms to establish the functional correctness of the recursive implementation
of Quicksort from Figure 1. In a nutshell, we proceed as follows.

(i) We formalize the semantics of functional programs in extensions of the first-
order theory of lists (Section 3). Rather than focusing on lists with a specific
background theory, such as integers/naturals, our formalization relies on a pa-
rameterized sort/type a abstracting specific (arithmetic) theories. To this end,
we impose that the sort a has a linear order ≤. We then express program seman-
tics in the first-order theory of lists parameterized by a, allowing us to quantify
over lists of sort a as they are domain elements of our first-order theory.

(ii) We revise inductive reasoning in first-order theorem proving (Section 4) and
introduce computation induction as a means to tackle recursive sorting algo-
rithms. We, therefore, extend the first-order reasoner with an inductive infer-



ence based on the computation induction schema and outline its necessity for
recursive sorting routines.
(iii) We leverage first-order theorem proving for compositional proofs of recursive
parameterized sorting algorithms (Section 5), in particular of Quicksort from
Figure 1. Our proofs do not rely on manually proven invariants or other forms
of inductive annotations. Rather, we embed the application of induction directly
in saturation proving and manually split (sorting) verification conditions into
multiple proof obligations when necessary. Each such condition represents a first-
order lemma, and hence a proof step, that is proved by saturation with induction.
Specifically, all our lemmas/verification conditions are automatically proven by
means of structural and/or computation induction during the saturation process.
Thanks to the automation of induction in saturation, we turn first-order theorem
proving into a powerful approach to guide human reasoning about recursive
properties. We do not rely on user-provided inductive properties, but generate
inductive hypotheses/invariants via inductive inferences as logical consequences
of our program semantics.
(iv) We note that sorting algorithms often follow a divide-and-conquer approach
(see Figure 2). We show how proof search can be guided via compositional proof
splitting for such routines, and provide a generalized set of lemmas that is ap-
plicable to functional sorting algorithms on recursive data structures, such as
lists (Section 6). Doing so, we remark that one of the major reasoning burdens
towards establishing the correctness of sorting algorithms comes with formaliz-
ing permutation properties, for example that two lists are permutations of each
other. Universally quantifying over permutations of lists is, however, not a first-
order property and hence reasoning about list permutation requires higher-order
logic. While counting and comparing the number of list elements is a viable
option to formalize permutation equivalence in first-order logic, the necessary
arithmetic reasoning adds an additional burden to the underlying prover. We
overcome this challenge by introducing an effective first-order formalization of
permutation equivalence over parameterized lists. Our permutation equivalence
property encodes multiset operations over lists, eliminating the need of counting
list elements, and therefore arithmetic reasoning, or fully axiomatizing (higher-
order) permutations.
Contributions. In summary, we bring the following main contributions.
(i) We introduce the formal foundations for formalizing the semantics of func-

tional programs with recursive data structures in the first-order theory of
lists with parameterized sorts. Doing so, we capture the correctness of sort-
ing routines via two properties over lists, namely the sortedness property
and the permutation equivalence property, and introduce a first-order for-
malization of these properties (Section 3).

(ii) We extend first-order theorem proving to include inductive inferences based
on computation induction, enabling automated inductive reasoning with
first-order provers over recursive functions (Section 4).

(iii) We showcase compositional reasoning via first-order theorem provers with
built-in induction and provide a fully automated compositional correctness
proof of the recursive Quicksort algorithm of Figure 1 (Section 5). We em-



phasize that the only manual effort in our framework comes with splitting
formulas into multiple lemmas (Section 6.1); each lemma is established au-
tomatically by means of automated theorem proving with built-in induction.

(iv) We generalize our inductive lemmas to prove correctness of multiple func-
tional sorting algorithms (Section 6.2), including Mergesort and Insertionsort.

(v) We demonstrate our findings (Section 7) by implementing our approach on
top of the Vampire theorem prover [12], providing thus a fully automatd tool
support towards validating the functional correctness of sorting algorithms.

2 Preliminaries

We assume familiarity with standard first-order logic (FOL) and briefly introduce
saturation-based proof search in first-order theorem proving [12].
Saturation. Rather than using arbitrary first-order formulae G, most first-order
theorem provers rely on a clausal representation C of G. The task of first-order
theorem proving is to establish that a formula/goal G is a logical consequence of
a set A of clauses, including assumptions. Doing so, first-order provers clausify
the negation ¬G of G and derive that the set S = A ∪ {¬G} is unsatisfiable1.
To this end, first-order provers saturate S by computing all logical consequences
of S with respect to some sound inference system I. A sound inference system
I derives a clause D from clauses C such that C → D. The saturated set of S
w.r.t. I is called the closure of S w.r.t. I, whereas the process of deriving the
closure of S is called saturation. By soundness of I, if the closure of S contains
the empty clause □, the original set S of clauses is unsatisfiable, implying the
validity of A → G; in this case, we established a refutation of ¬G from A, hence
a proof of validity of G.
The superposition calculus is a common inference system used by saturation-
based provers for FOL with equality [18]. The superposition calculus is sound
and refutationally complete: for any unsatisfiable formula ¬G, superposition-
based saturation derives the empty clause □ as a logical consequence of ¬G.
Parameterized Lists. We use the first-order theory of recursively defined
datatypes [11]. In particular, we consider the list datatype with two construc-
tors nil and cons(x, xs), where nil is the empty list and x and xs are respectively
the head and tail of a list. We introduce a type parameter a that abstracts the
sort/background theory of the list elements. Here, we impose the restriction that
the sort a has a linear order <, that is, a binary relation which is reflexive, an-
tisymmetric, transitive and total. For simplicity, we also use ≥ and ≤ as the
standard ordering extensions of <. As a result, we work in the first-order theory
of lists parameterized by sort a, allowing us to quantify over lists as domain
elements of this theory. For simplicity, we write xsa, ysa, zsa to mean that the
lists xs, ys, zs are parameterized by sort a; that is their elements are of sort a.
Similarly, we use xa, ya, za to mean that the list elements x, y, z are of sort a.
Whenever it is clear from the context, we omit specifying the sort a.

1 for simplicity, we denote by ¬G the clausified form of the negation of G



Function definitions. We make the following abuse of notation. For some func-
tion f in some program P, we use the notation f(arg1, ...) to refer to function
definitions/calls appearing in the input algorithm, while the mathematical no-
tation f(arg1, ...) refers to its pendant in our logical representation, that is the
function call semantics in first-order notation as introduced in Section 3.

3 First-Order Semantics of Functional Sorting Algorithms

We outline our formalization of recursive sorting algorithms in the full first-order
theory of parameterized lists.

3.1 Recursive Functions in First-Order Logic

We investigate recursive algorithms written in a functional coding style and
defined over lists using list constructors. That is, we consider recursive functions
f that manipulate the empty list nil and/or the list cons(x, xs).
Many recursive sorting algorithms, as well as other recursive operations over
lists, implement a divide-and-conquer approach: let f be a function following
such a pattern, f uses (i) a partition function to divide lista, that is a list of sort
a, into two smaller sublists upon which f is recursively applied to, and (ii) calls
a combination function that puts together the result of the recursive calls of f.
Figure 2 shows such a divide-and-conquer pattern, where the partition function
partition uses an invertible operator ◦, with ◦−1 being the complement of ◦; f is
applied to the results of ◦ before these results are merged using the combination
function combine.

1 f :: a’ list → ... → a’ list
2 f(nil, ...) = nil
3 f(cons(y, ys), ...)=
4 combine(
5 f(partition◦(cons(y, ys))),
6 f(partition◦−1(cons(y, ys)))
7 )
8

Fig. 2: Recursive divide-and-conquer approach.

Note that the recursive func-
tion f of Figure 2 is de-
fined via the declaration f ::
a′list → ... → a′list, where
... denotes further input pa-
rameters. We formalize the
first-order semantics of f via
the function f : (lista × ...) 7→
lista, by translating the in-
ductive function definitions f
to the following first-order formulas with parameterized lists (in first-order logic,
function definitions can be considered as universally quantified equalities):

f(nil) = nil
∀xa, xsa . f(cons(x, xs)) = combine( f(partition◦(cons(x, xs))),

f(partition◦−1(cons(x, xs)))).
(1)

The recursive divide-and-conquer pattern of Figure 2, together with the first-
order semantics (1) of f, is used in Sections 5-6 for proving correctness of the



Quicksort algorithm (and other sorting algorithms), as well as for applying
lemma generalizations for divide-and-conquer list operations. We next introduce
our first-order formalization for specifying that f implements a sorting routine.

3.2 First-Order Specification of Sorting Algorithms

We consider a specific function instance of f implementing a sorting algorithm,
expressed through sort :: a′list → a′list. The functional behavior of sort needs
to satisfy two specifications implying the functional correctness of sort: (i) sort-
edness and (ii) permutations equivalence of the list computed by sort.
(i) Sortedness: The list computed by the sort function must be sorted w.r.t.
some linear order ≤ over the type a of list elements. We define a parameterized
version of this sortedness property using an inductive predicate sorted as follows:

sorted(nil) = ⊤
∀xa, xsa . sorted(cons(x, xs)) = (elem≤list(x, xs) ∧ sorted(xs)),

(2)

where elem≤list(x, xs) specifies that x ≤ y for any element y in xs. Proving
correctness of a sorting algorithm sort thus reduces to proving the validity of:

∀xsa . sorted(sort(xs)). (3)

(ii) Permutation Equivalence: The list computed by the sort function is a
permutation of the input list to the sort function. In other words the input
and output lists of sort are permutations of each other, in short permutation
equivalent.
Axiomatizing permutations requires quantification over relations and is thus not
expressible in first-order logic [14]. A common approach to prove permutation
equivalence of two lists is to count the occurrence of elements in each list respec-
tively and compare the occurrences of each element. Yet, counting adds a burden
of arithmetic reasoning over naturals to the underlying prover, calling for addi-
tional applications of mathematical induction. We overcome these challenges of
expressing permutation equivalence as follows. We introduce a family of func-
tions filterQ manipulating lists, with the function filterQ being parameterized
by a predicate Q and as given in Figure 3.

1 filterQ :: a’ → a’ list → a’ list
2 filterQ(x, nil) = nil
3 filterQ(x, cons(y, ys))=
4 if (Q(y, x)){
5 cons(y,filterQ(x, ys))
6 } else {
7 filterQ(x, ys)
8 }

Fig. 3: Functions filterQ filtering elements of a list,
by using a predicate Q(y, x) over list elements x, y.

In particular, given an
element x and a list
ys, the functions filter=,
filter<, and filter≥ com-
pute the maximal sub-
lists of ys that contain
only equal, resp. smaller
and greater-or-equal ele-
ments to x. Analogously
to counting the multiset
multiplicity of x in ys via



counting functions, we compare lists given by filter=, avoiding the need to count
the number of occurrences of x and hence prolific axiomatizations of arithmetic.
Thus, to prove that the input/output lists of sort are permutation equivalent,
we show that, for every list element x, the results of applying filter= to the
input/output list of sort are the same over all elements. Formally, we have the
following first-order property of permutation equivalence:

∀xa, xsa . filter=(x, xs) = filter=(x, sort(xs)). (4)

4 Computation Induction in Saturation

In this section, we describe our reasoning extension to saturation-based first-
order theorem proving, in order to support inductive reasoning for recursive
sorting algorithms as introduced in Section 3. Our key reasoning ingredient comes
with a structural induction schema of computation induction, which we directly
integrate in the saturation proving process.
Inductive reasoning has recently been embedded in saturation-based theorem
proving [7], by extending the superposition calculus with a new inference rule
based on induction axioms:

L[t] ∨ C
(Ind)

cnf(¬F ∨ C)
where (1) L[t] is a quantifier-free (ground) literal,

(2) F → ∀x.L[x] is a valid induction axiom,
(3) cnf(¬F∨C) is the clausal form of ¬F∨C.

An induction axiom refers to an instance of a valid induction schema. In our
work, we use structural and computational induction schemata.
In particular, we use the following structural induction schema over lists:(

F [nil] ∧ ∀x, ys.(F [ys] → F [cons(x, ys)])
)
→ ∀zs.F [zs] (5)

Then, considering the induction axiom resulting from applying schema (5) to L,
we obtain the following Ind instance for lists:

L[t] ∨ C

L[nil] ∨ L[σys] ∨ C
L[nil] ∨ L[cons(σx, σys)] ∨ C

where t is a ground term of sort list, L[t] is ground, and σx and σys are fresh
constant symbols. The above Ind instance yields two clauses as conclusions and
is applied during the saturation process.
Sorting algorithms, however, often require induction axioms that are more com-
plex than instances of structural induction (5). Such axioms are typically in-
stances of the computation/recursion induction schema, arising from divide-
and-conquer strategies as introduced in Section 3.1. Particularly, the complexity
arises due to the two recursive calls on different parts of the original input list
produced by the partition function that have to be taken into account by the



induction schema. We therefore use the following computation induction schema
over lists:(

F [nil] ∧ ∀x, ys.
((

F [partition◦(x, ys)]∧
F [partition◦−1(x, ys)]

)
→ F [cons(x, ys)])

))
→ ∀zs.F [zs] (6)

yielding the following instance of Ind that is applied during saturation:

L[t] ∨ C

L[nil] ∨ L[partition◦(σx, σys)] ∨ C
L[nil] ∨ L[partition◦−1(σx, σys)] ∨ C

L[nil] ∨ L[cons(σx, σys)] ∨ C

where t is a ground term of sort list, L[t] is ground, σx and σys are fresh constant
symbols, and partition◦ and its complement refer to the functions that partition
lists into sublists within the actual sorting algorithms.

5 Proving Recursive Quicksort

We now describe our approach towards proving the correctness of the recursive
parameterized version of Quicksort, as given in Figure 1. Note that Quicksort
recursively sorts two sublists that contain respectively smaller and greater-or-
equal elements than the pivot element x of its input list. We reduce the task
of proving the functional correctness of Quicksort to the task of proving the
(i) sortedness property (3) and (ii) the permutation equivalence property (4) of
Quicksort. As mentioned in Section 3.2, a similar reasoning is needed for most
sorting algorithms, which we evidence in Sections 6–7.

5.1 Proving Sortedness for Quicksort

Given an input list xs, we prove that Quicksort computes a sorted list by
considering the property (3) instantiated for Quicksort. That is, we prove:

∀xsa . sorted(quicksort(xs)) (7)

The sortedness property (7) of Quicksort is proved via compositional reasoning
over (7). Namely, we enforce the following two properties that together imply (7):

(S1) By using the linear order ≤ of the background theory a, for any element
y in the sorted list quicksort(filter<(x, xs)) and any element z in the sorted
list quicksort(filter≥(x, xs)), we have y ≤ x ≤ z.

(S2) The functions filter< and filter≥ of Figure 3 are correct. That is, filter-
ing elements from a list that are smaller, respectively greater-or-equal, than an
element x results in sublists only containing elements smaller than, respectively
greater-or-equal, than x.



Similarly to (2) and to express property (S2), we introduce the inductively
defined predicates elem≤list :: a′ → a′list → bool and list≤list :: a′list →
a′list → bool:

∀xa . elem≤list(x, nil) = ⊤
∀xa, ya, ysa . elem≤list(x, cons(y, ys)) = x ≤ y ∧ elem≤list(x, ys),

(8)

and

∀ysa . list≤list(nil, ys) = ⊤
∀xa, xsa, ysa . list≤list(cons(x, xs), ys) = (elem≤list(x, ys) ∧ list≤list(xs, ys)).

(9)

Thus, for some element x and lists xs, ys, we express that x is smaller than or
equal to any element of xs by elem≤list(x, xs). Similarly, list≤list(xs, ys) states
that every element in list xs is smaller than or equal to any element in ys.
The inductively defined predicates of (8)–(9) allow us to express necessary lem-
mas over list operations preserving the sortedness property (7), for example, to
prove that appending sorted lists yields a sorted list.
Proving properties (S1)–(S2), and hence deriving the sortedness property (7)
of Quicksort, requires three first-order lemmas in addition to the first-order
semantics (1) of Quicksort. Each of these lemmas is automatically proven by
saturation-based theorem proving using the structural and/or computation in-
duction schemata of (5) and (6); hence, by compositionality, we obtain (S1)–
(S2) implying (7). We next discuss these three lemmas and outline the complete
(compositional) proof of the sortedness property (7) of Quicksort.
• In support of (S1), lemma (10) expresses that for two sorted lists xs, ys and
a list element x, such that elem≤list(x, xs) holds and all elements of the con-
structed list cons(x, xs) are greater than or equal to all elements in ys, the result
of concatenating ys and cons(x, xs) yields a sorted list. Formally, we have

∀xa, xsa, ysa .
(
sorted(xs) ∧ sorted(ys) ∧ elem≤list(x, xs)∧
list≤list(ys, cons(x, xs))

)
→ sorted(append(ys, cons(x, xs)))

(10)

• In support of (S2), we need to establish that filtering greater-or-equal elements
for some list element x results in a list whose elements are greater-or-equal than
x. In other words, the inductive predicate of (8) is invariant over sorting and
filtering operations over lists.

∀xa, xsa . elem≤list(x, quicksort(filter≥(x, xs))). (11)

• Lastly and in further support of (S1)–(S2), we establish that all elements
of a list xs are “covered” with the filtering operations filter≥ and filter<
w.r.t. a list element x of xs. Intuitively, a call of filter<(x,xs) results in a
list containing all elements of xs that are smaller than x, while the remaining
elements of xs are those that are greater-or-equal than x and hence are contained
in cons(x, filter≥(x, xs)). By applying Quicksort over the input list xs, we get:



∀xa, xsa . list≤list(
quicksort(filter<(x, xs)),
cons(x, quicksort(filter≥(x, xs)))).

(12)

The first-order lemmas (10)–(12) guide saturation-based proving to instantiate
structural/computation induction schemata and derive the following induction
axiom necessary to prove (S1)–(S2), and hence sortedness of Quicksort:(

sorted(quicksort(nil))∧

∀xa, xsa .
( sorted(quicksort(filter≥(x, xs)))∧
sorted(quicksort(filter<(x, xs)))

)
→ sorted(quicksort(cons(x, xs))

)
→ ∀xsa . sorted(quicksort(xs)),

(13)
where axiom (13) is automatically obtained during saturation from the computa-
tion induction schema (6). Intuitively, the prover replaces F by sorted(quicksort(t))
for some term t, and uses filter< and filter≥ as partition◦ and partition◦−1

respectively to find the necessary computation induction schema. We emphasize
that this step is fully automated during the saturation run.
The first-order lemmas (10)–(12), together with the induction axiom (13) and
the first-order semantics (1) of Quicksort, imply the sortedness property (4) of
Quicksort; this proof can automatically be derived using saturation-based rea-
soning. Yet, the obtained proof assumes the validity of each of the lemmas (10)–
(12). To eliminate this assumption, we propose to also prove lemmas (10)–(12)
via saturation-based reasoning. Yet, while lemma (10) is established by satura-
tion with structural induction (5) over lists, proving lemmas (11)–(12) requires
further first-order formulas. In particular, for proving lemmas (11)–(12) via sat-
uration, we use four further lemmas, as follows.
• Lemmas (14)–(15) indicate that the order of elem≤list and list≤list is pre-
served under quicksort, respectively. That is,

∀xa, xsa . elem≤list(x, xs) → elem≤list(x, quicksort(xs)) (14)

and

∀xsa, ysa . list≤list(ys, xs) → list≤list(quicksort(ys), xs). (15)

• Proving lemmas (14)–(15), however, requires two further lemmas that follow
from saturation with built-in computation and structural induction, respectively.
Namely, lemmas (16)–(17) establish that elem≤list and list≤list are also invari-
ant over appending lists. That is,

∀xa, ya, xsa, ysa .
(
y ≤ x ∧ elem≤list(y, xs) ∧ elem≤list(y, ys)

)
→ elem≤list(y, append(cons(x, ys), xs))

(16)

and
∀xsa, ysa, zsa .

(
list≤list(ys, xs) ∧ list≤list(zs, xs)

)
→ list≤list(append(ys, zs), xs)

(17)



With lemmas (14)–(17), we automatically prove lemmas (10)–(12) via saturation-
based reasoning. The complete automation of proving properties (S1)–(S2),
and hence deriving the sortedness property (7) of Quicksort in a compositional
manner, requires thus altogether seven lemmas in addition to the first-order se-
mantics (1) of Quicksort. Each of these lemmas is automatically established
via saturation with built-in induction. Hence, unlike interactive theorem prov-
ing, compositional proving with first-order theorem provers can be leveraged to
eliminate the need to a priori specifying necessary induction axioms.

5.2 Proving Permutation Equivalence for Quicksort

In addition to establishing the sortedness property (7) of Quicksort, the func-
tional correctness of Quicksort also requires proving the permutation equiva-
lence property (4) for Quicksort. That is, we prove:

∀xa, xsa . filter=(x, xs) = filter=(x, quicksort(xs)). (18)

In this respect, we follow the approach introduced in Section 3.2 to enable first-
order reasoning over permutation equivalence (18). Namely, we use filter= to
filter elements x in the lists xs and quicksort(xs), respectively, and build the cor-
responding multisets containing as many x as x occurs in xs and quicksort(xs).
By comparing the resulting multisets, we implicitly reason about the number
of occurrences of x in xs and quicksort(xs), yet, without the need to explicitly
count occurrences of x. In summary, we reduce the task of proving (18) to com-
positional reasoning again, namely to proving following two properties given as
first-order lemmas which, by compositionality, imply (18):
(P1) List concatenation commutes with filter=, expressed by the lemma:

∀xa, xsa, ysa . filter=(x, append(xs, ys)) = append( filter=(x, xs),
filter=(x, ys)).

(19)

(P2) Appending the aggregate of both filter-operations results in the same
multisets as the unfiltered list, that is, permutation equivalence is invariant over
combining complementary reduction operations. This property is expressed via:

∀xa, ya, xsa . filter=(x, xs) = append( filter=(x, filter<(y, xs)),
filter=(x, filter≥(y, xs))).

(20)

Similarly as in Section 5.1, we prove lemmas ((P1))–((P2)) by saturation-based
reasoning with built-in induction. In particular, investigating the proof output
shows that lemma ((P1)) is established using the structural induction schema (5)
in saturation, while the validity of lemma ((P2)) is obtained by applying the
computation induction schema (6) in saturation.
By proving lemmas ((P1))–((P2)), we thus establish validity of permutation
equivalence (18) for Quicksort. Together with the sortedness property (7)
of Quicksort proven in Section 5.1, we conclude the functional correctness of
Quicksort in a fully automated and compositional manner, using saturation-
based theorem proving with built-in induction and altogether nine first-order
lemmas in addition to the first-order semantics (1) of Quicksort.



6 Lemma Generalizations for Guided Proof Splits

Establishing the functional correctness of Quicksort in Section 5 uses nine first-
order lemmas that express inductive properties over lists in addition to the first-
order semantics (1) of Quicksort. While each of these lemmas is proved by satu-
ration using structural/computation induction schemata, coming up with proper
inductive lemmas remains crucial in reasoning about inductive data structures.
That is, we need effective ways to split the proof so that the first-order theorem
prover can automatically discharge all proof steps with built-in induction.
In Section 6.1, we describe when and how we split proof obligations into lemmas,
so that each of these lemmas can further be proved automatically using first-
order theorem proving. In Section 6.2, we next demonstrate that the lemmas of
Section 5 can be generalized and leveraged to prove correctness of other divide-
and-conquer list sorting algorithms, in particular within the Mergesort routine
of Figure 5. The generality of our inductive lemmas from Section 5 also helps
reasoning about sorting routines that do not necessarily follow a divide-and-
conquer strategy, such as the Insertionsort algorithm of (Figure 4).

6.1 Guided Proof Splitting

Contrary to automated approaches that use inductive annotations to alleviate
inductive reasoning, our approach synthesizes the correct induction axioms au-
tomatically during saturation runs. However, there is still a manual limitation
to our approach, namely proof splitting. That is, deciding when a lemma is nec-
essary or helpful for the automated reasoner.
Splitting the proof into multiple lemmas is necessary to guide the prover to find
the right terms to apply the inductive inferences of Section 4. This is particu-
larly the case when input problems, such as the sorting algorithms, contain calls
to multiple recursive functions - each of which has to be shown to preserve the
property that is to be verified.
We next illustrate and examine the need for proof splitting using lemma (10).

Example 1 (Compositional reasoning over sortedness in saturation). Consider
the following stronger version of lemma (10) in the proof of Quicksort:

∀xa, xsa, ysa .(
sorted(xs) ∧ sorted(ys)

)
→ sorted(append(ys, cons(x, xs))).

(21)

This formula could automatically be derived by saturation with computation
induction (6) while trying to prove sortedness of the algorithm. However, for-
mula (21) is not helpful with regards to the specification of Quicksort since
the value of x is not correctly restricted w.r.t. ≤ to xs, ys (e.g. concatenating
a sorted xs with an arbitrary x not necessarily yields a sorted list). The prover
needs additional information to verify sortedness. Therefore, the assumptions
elem≤list(x, xs) and list≤list(ys, cons(x, xs)) are needed in addition to (21),
resulting in lemma (10). Yet, lemma (10) from Section 5 can be automatically



1 insertsort :: a’ list → a’ list
2 insertsort(nil) = nil
3 insertsort(cons(x, xs)) = insert(x, insertsort(xs))
4
5 insert :: a’ → a’ list → a’ list
6 insert(x, nil) = cons(x, nil)
7 insert(x, cons(y, ys)) =
8 if (x ≤ y) {
9 cons(x, cons(y, ys))

10 } else {
11 cons(y, insert(x, ys))
12 }
13

Fig. 4: Recursive algorithm of Insertionsort using the recursive function def-
inition insertsort and auxiliary (recursive) function insert. Insertionsort
recursively sorts the list by inserting single elements in the correct order with
the helper function insert.

derived via saturation with compositional reasoning, based on computation in-
duction (6). That is, we manually split proof obligations based on missing infor-
mation in the saturation runs: we derive (21) from (6) via saturation, strengthen
the hypotheses of (21) with missing necessary conditions elem≤list(x, xs) and
list≤list(ys, cons(x, xs)), and prove their validity via saturation, yielding (10).

Manual Formula Splits for Automated Proofs. Contrary to loop invariants
or other inductive annotations that are rarely proven correct by means of the
underlying verification technique itself, our approach automatically proves each
lemma correct by synthesizing the correct induction axioms during proof search.
In case a proof fails, we investigate and manually strengthen the synthesized
induction axioms and verify their validity in turn again with the theorem prover
and built-in induction. That is, we do not simply assume inductive lemmas but
also provide a formal argument of their validity. We emphasize that we manually
split the proof into multiple verification conditions such that inductive reasoning
can fully be automated in saturation.

6.2 Lemma Generalizations for Sorting

The lemmas from Section 5 represent a number of common proof splits that
can be applied to various list sorting tasks. In the following we generalize their
structure and apply them to two other sorting algorithms, namely Mergesort
and Insertionsort.
Common Patterns of Inductive Lemmas for Sorting Algorithms. Con-
sider the computation induction schema (6). When using (6) for proving the sort-
edness (7) and permutation equivalence (18) of Quicksort, the inductive formula
F of (6) is, respectively, instantiated with the predicates sorted from (7) and
filter= from (18). The base case F [nil] of schema (6) is then trivially proved by
saturation for both properties (7) and (18) of Quicksort.



1 mergesort :: a’ list → a’ list
2 mergesort(nil) = nil
3 mergesort(xs) =
4 merge(
5 mergesort(take((xslength div 2), xs)) ,
6 mergesort(drop((xslength div 2), xs))
7 )
8
9 merge :: a’ list → a’ list → a’ list

10 merge(nil, ys) = ys
11 merge(xs, nil) = xs
12 merge(cons(x, xs), cons(y, ys)) =
13 if (x ≤ y) {
14 cons(x, merge(xs, cons(y, ys)))
15 } else {
16 cons(y, merge(cons(x, xs), ys))
17 }
18

Fig. 5: Recursive Mergesort using the recursive functions merge, take, and drop
over lists of sort a. Mergesort splits the input list xs into two halves by using
take and drop that respectively take and drop the first half of elements of the
input list (corresponding to partition functions of Figure 2). Both halves are
recursively sorted and combined by the merge function, yielding a sorted list
(corresponding to combine of Figure 2).

Proving the induction step case of schema (6) is however challenging as it relies
on partition-functions which are further used by combine functions within the
divide-and-conquer patterns of Figure 2. Intuitively this means, that proving the
induction step case of schema (6) for the sortedness (7) and permutation equiv-
alence (18) properties requires showing that applying combine functions over
partition functions preserve sortedness (7) and permutation equivalence (18),
respectively. For divide-and-conquer algorithms of Figure 2, the step case of
schema (6) requires thus proving the following lemma:

(
∀xa, ysa.

(
combine

(
F [partition◦(x, ys)]∧
F [partition◦−1(x, ys)]

)
→ F [cons(x, ys)])

))
. (22)

We next describe generic instances of lemma (22) to be used within proving
functional correctness of sorting algorithms, depending on the partition/combine
function of the underlining divide-and-conquer sorting routine.
(i) Combining sorted lists preserves sortedness. For proving the inductive
step case (22) of the sortedness property (3) of sorting algorithms, we require
the following generic lemma (23):

∀xsa, ysa .
(
sorted(xs) ∧ sorted(ys)

)
→ sorted(combine(xs, ys)), (23)



ensuring that combining sorted lists results in a sorted list. Lemma (23) is used
to establish property (S1) of Quicksort, namely used as lemma (10) for proving
the preservation of sortedness under the append function.
We showcase that generality of lemma (23), by using it upon sorting routines
different than Quicksort. Consider, for example, Mergesort as given in Figure
5. The sortedness property (3) of Mergesort can be proved by using saturation
with lemma 23; note that the merge function of Mergesort acts as a combine
function of (23). That is, we establish the sortedness property of Mergesort via
the following instance of (23):

∀xsa, ysa . sorted(xs) ∧ sorted(ys) → sorted(merge(xs, ys)) (24)

Finally, lemma (23) is not restricted to divide-and-conquer routines. For exam-
ple, when proving the sortedness property (3) of the Insertionsort algorithm
of Figure 4, we use saturation with lemma (23) applied to insert. As such,
sortedness of Insertionsort is established by the following instance of (23):

∀xa, xsa . sorted(xs) → sorted(insert(x, xs)) (25)

(ii) Combining reductions preserves permutation equivalence. Similarly
to Section 5.2, proving permutation equivalence (4) over divide-and-conquer sort-
ing algorithms of Figure 2 is established via the following two properties:
• As in (P1) for Quicksort, we require that combine commutes with filter=:

∀xa, xsa, ysa . filter=(x, combine(xs, ys)) = combine(filter=(x, xs),

filter=(x, ys))
(26)

• Similarly to (P2) for Quicksort, we ensure that, by combining (complemen-
tary) reduction functions, we preserve (4). That is,

∀xa, xsa . filter=(x, xs) = combine(filter=(x, partition◦(xs)),

filter=(x, partition◦−1(xs)))
(27)

Note that lemmas (P1) and (P2) for Quicksort are instances of (26) and (27)
respectively, as the append function of Quicksort acts as a combine function
and the filter< and filter≥ functions are the partition functions of Figure 2.
To prove the permutation equivalence (4) property of Mergesort, we use the
functions take and drop as the partition functions of lemmas (26)–(27). Doing
so, we embed a natural number argument n in lemmas (26)–(27), with n control-
ling how many list elements are taken and dropped, respectively, in Mergesort.
As such, the following instances of lemmas (26)–(27) are adjusted to Mergesort:

∀xa, xsa, ysa . filter=(x,merge(xs, ys)) = append(filter=(x, xs),

filter=(x, ys))
(28)

and

∀xa, nN, xsa . filter=(x, xs) = append(filter=(x, take(n, xs)),

filter=(x, drop(n, xs))),
(29)



with lemmas (28)–(29) being proved via saturation. With these lemmas at hand,
the permutation equivalence (4) of Mergesort is established, similarly to Quicksort.

Finally, the generality of lemmas (26)–(27) naturally pays off when proving the
permutation equivalence property (4) of Insertionsort. Here, we only use a
simplified instance of (26) to prove (4) is preserved by the auxiliary function
insert. That is, we use the following instance of (26):

∀xa, ya, ysa . filter=(x, cons(y, ys)) = filter=(x, insert(y, ys)), (30)

which is automatically derivable by saturation with computation induction (6).
We conclude by emphasizing the generality of the lemmas (23) and (26)–(27) for
automating inductive reasoning over sorting algorithms in saturation-based first-
order theorem proving: functional correctness of Quicksort, Mergesort, and
Insertionsort are proved using these lemmas in saturation with induction.
Moreover, each of these lemmas is established via saturation with induction.
Thus, compositional reasoning in saturation with computation induction enables
proving challenging sorting algorithms in a fully automated manner.

7 Implementation and Experiments

Implementation. Our work on saturation with induction in the first-order the-
ory of parameterized lists is implemented in the first-order prover Vampire [12].
In support of parameterization, we extended the SMT-LIB parser of Vampire
to support parametric data types from SMT-LIB [1] – version 2.6. In particular,
using the par keyword, our parser interprets (par (a1 ... an) ...) similar
to universally quantified blocks where each variable ai is a type parameter.
Appropriating a generic saturation strategy, we adjust the simplification order-
ings (LPO) for efficient equality reasoning/rewrites to our setting. For example,
the precedence of function quicksort is higher than of symbols nil, cons, append,
filter< and filter≥, ensuring that quicksort function terms are expanded to
their functional definitions.
We further apply recent results of encompassment demodulation [3] to improve
equality reasoning within saturation (–drc encompass). We use induction on
data types (–ind struct), including complex data type terms (–indoct on).
Experimental Evaluation. We evaluated our approach over challenging re-
cursive sorting algorithms taken from [17], namely Quicksort, Mergesort, and
Insertionsort. We show that the functional correctness of these sorting rou-
tines can be verified automatically by means of saturation-based theorem proving
with induction, as summarized in Table 1.
We divide our experiments according to the specification of sorting algorithms:
the first column PermEq shows the experiments of all sorting routines w.r.t. per-
mutation equivalence (4), while Sortedness refers to the sortedness (3) property,
together implying the functional correctness of the respective sorting algorithm.
Here, the inductive lemmas of Sections 5–6 are proven in separate saturation



PermEq
Benchm. Pr. T Required lemmas
IS-PE ✓ 0.02 {IS-PE-L1}
IS-PE-L1 ✓ 0.13 ∅
MS-PE ✓ 0.06 {MS-PE-L1, MS-PE-L2}
MS-PE-L1 ✓* 0 -
MS-PE-L2 ✓ 0.03 ∅
MS-PE-L3 ✓ 0.15 ∅
QS-PE ✓ 0.5 {QS-PE-L1, QS-PE-L2}
QS-PE-L1 ✓ 0.05 ∅
QS-PE-L2 ✓ 0.09 ∅

Table 1: Experimental evaluation of
proving properties of sorting algorithms,
using a time limit of 5 minutes on ma-
chine with AMD Epyc 7502, 2.5 GHz
CPU with 1 TB RAM, using 1 core and
16 GB RAM per benchmark.

Sortedness
Benchm. Pr. T Required lemmas
IS-S ✓ 0.01 {IS-S-L1}
IS-S-L1 ✓ 8.28 -
MS-S ✓ 0.08 ∅
MS-S-L1 ✓* 0 -
MS-S-L2 ✓ 0.02 ∅

QS-S ✓ 0.09
{QS-S-L1, QS-S-L2,
QS-S-L3}, {QS-S-L1,
QS-S-L3, QS-S-L4}

QS-S-L1 ✓ 0.27 ∅
QS-S-L2 ✓ 0.04 {QS-S-L4}
QS-S-L3 ✓ 11.82 {QS-S-L4, QS-S-L5}
QS-S-L4 ✓ 8.28 {QS-S-L6}
QS-S-L5 ✓ 0 {QS-S-L7}
QS-S-L6 ✓ 0.02 ∅
QS-S-L7 ✓ 0.02 ∅

IS, MS and QS correspond to Insertionsort, Mergesort and Quicksort; S and PE
respectively denote sortedness (3) and permutation equivalence (4), and Li stands for
the i-th lemma of the problem.

runs of Vampire with structural/computation induction; these lemmas are then
used as input assumptions to Vampire to prove validity of the respective bench-
mark.2 A benchmark category SA-PR[-Li] indicates that it belongs to proving
the property PR for sorting algorithm SA, where PR is one of S (sortedness (3))
and PE (permutation equivalence (4)) and SA is one of IS (Insertionsort), MS
(Mergesort) and QS (Quicksort). Additionally, an optional Li indicates that
the benchmark corresponds to the i-th lemma for proving the property of the
respective sorting algorithm.
For our experiments, we ran all possible combinations of lemmas to determine
the minimal lemma dependency for each benchmark. For example, the sortedness
property of Quicksort (QS-S) depends on seven lemmas (see Section 5.1), while
the third lemma for this property (QS-S-L3) depends on four lemmas (see Sec-
tion 5.2). The second column Pr. indicates that Vampire solved the benchmark,
by using a minimal subset of needed lemmas given in the fourth column. The
third column T shows the running time in seconds of the respective saturation
run using the first solving strategy identified during portfolio mode.
To identify the successful configuration, we ran Vampire in a portfolio setting
for 5 minutes on each benchmark, with strategies enumerating all combinations
of options that we hypothesized to be relevant for these problems. In accor-
dance with Table 1, Vampire compositionally proves permutation equivalence
of Insertionsort and Quicksort and sortedness of Mergesort and Quicksort.
Note that sortedness of Mergesort is proven without any lemmas, hence lemma

2 Link to experiments upon request due to anonymity.



MS-S-L1 is not needed. The lemmas MS-PE-L1 for the permutation equivalence of
Mergesort and IS-S-L1 for the sortedness of Insertionsort could be proven
separately by more tailored search heuristics in Vampire (hence ✓∗), but our
cluster setup failed to consistently prove these in the portfolio setting. Further
statistics on inductive inferences are provided in Appendix A.

8 Related Work

While Quicksort has been proven correct on multiple occasions, not many have
investigated a fully automated proof of the algorithm. One partially automated
proof of Quicksort, closest to our work, relies on Dafny [15], where loop invari-
ants are manually provided [2]. While [2] claims to prove some of these lemmas,
not all invariants are proved correct (only assumed to be so). Similarly, the Why3
framework [4] has been leveraged to prove the correctness of Mergesort [16] over
parameterized lists and arrays. These proofs also rely on manual proof splitting
with the additional overhead of choosing the underlying prover for each subgoal
as Why3 is interfaced with multiple automated and interactive solvers.
The work of [19] establishes the correctness of permutation equivalence for mul-
tiple sorting algorithms based on separation logic through inductive lemmas.
However, [19] does not address the correctness proofs of the sortedness prop-
erty. Contrarily, we automate the correctness proofs of sorting algorithms, using
compositional first-order reasoning in the theory of parameterized lists.
Verifying functional correctness of sorting routines has also been explored in
the abstract interpretation and model-checking communities, by investigating
array-manipulating programs [6,9]. In [6], the authors automatically generate
loop invariants for standard sorting algorithms of arrays of fixed length; the
framework is, however, restricted solely to inner loops and does not handle re-
cursive functions. Further, in [9] a priori given invariants/interpolants are used
in the verification process. Unlike these techniques, we do not rely on a user-
provided inductive invariant, nor are we restricted to inner loops.
There are naturally many examples of proofs of sorting algorithms using in-
teractive theorem proving (ITP), see e.g. [10,13]. The work of [10] establishes
correctness of Insertionsort. Similarly, the setting of [13] proves variations of
Introsort and Pdqsort – both using Isabelle/HOL [20]. However, ITP relies on
users to provide induction schemata, a burden that we eliminate in our approach.
When it comes to the landscape of automated reasoning, we are not aware of
other techniques enabling fully automated verification of such sorting routines.
To the best of our knowledge, the formal verification of Quicksort has so far
not been automated, an open challenge which we solve in this paper.

9 Conclusion and Future Work

We present an integrated formal approach to establish program correctness over
recursive programs based on saturation-based theorem proving. We automati-
cally prove recursive sorting algorithms, particularly the Quicksort algorithm,



by formalizing program semantics in the first-order theory of parameterized lists.
Doing so, we expressed the common properties of sortedness and permutation
equivalence in an efficient way for first-order theorem proving. By leveraging
common structures of divide-and-conquer sorting algorithms, we advocate com-
positional first-order reasoning with built-in structural/computation induction.
Proving further recursive sorting/search algorithms in future work, with im-
proved compositionality, is therefore an interesting challenge to investigate.
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A Generated Inductive Inference during Proof Search

For all conjectures and lemmas that were proved in portfolio mode, we summa-
rized the applications of inductive inferences with structural and computation
induction schemata in Table 2. Specifically, Table 2 compares the number of
inductive inferences performed during proof search (column IndProofSearch)
with the number of used inductive inferences as part of each benchmark’s proof
(column IndProof). While most safety properties and lemmas required less than
50 inductive inferences, thereby using mostly one or two of them in the proof,
some lemma proofs exceeded this by far. Most notably IS-S-L1 and QS-S-L1,
Insertionsort’s and Quicksort’s first lemma respectively, depended on many
more inductive inferences until the right axiom was found. Such statistics point
to areas where the prover still has room to be finetuned for software verification
and quality assurance purposes, here especially towards establishing correctness
of functional programs.



Table 2: Structural Induction Applications in Proof Search and Proof.
Benchmark IndProofSearch IndProof

IS-S 4 1

IS-S-L1 339 2

IS-PE 5 1

IS-PE-L1 34 1

MS-S 8 1

MS-S-L2 22 1

MS-PE 14 1

MS-PE-L2 16 1

MS-PE-L3 136 3

QS-S 10 2

QS-S-L1 510 2

QS-S-L2 9 1

QS-S-L3 130 2

QS-S-L4 183 3

QS-S-L5 0 0

QS-S-L6 26 1

QS-S-L7 16 2

QS-PE 12 1

QS-PE-L1 10 1

QS-PE-L2 42 4
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