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Abstract. This work studies the problem of stochastic dynamic filtering
and state propagation with complex beliefs. The main contribution is GP-
SUM, a filtering algorithm tailored to dynamic systems and observation
models expressed as Gaussian Processes (GP), and to states represented as
a weighted Sum of Gaussians. The key attribute of GP-SUM is that it does
not rely on linearizations of the dynamic or observation models, or on
unimodal Gaussian approximations of the belief, hence enables tracking
complex state distributions.
The algorithm can be seen as a combination of a sampling-based filter
with a probabilistic Bayes filter. On the one hand, GP-SUM operates by
sampling the state distribution and propagating each sample through the
dynamic system and observation models. On the other hand, it achieves
effective sampling and accurate probabilistic propagation by relying on
the GP form of the system, and the sum-of-Gaussian form of the belief.
We show that GP-SUM outperforms several GP-Bayes and Particle Fil-
ters on a standard benchmark. We also demonstrate its use in a pushing
task, predicting with experimental accuracy the naturally occurring non-
Gaussian distributions.

1 Introduction

Robotics and uncertainty come hand in hand. One of the defining challenges of
robotics research is to design uncertainty-resilient behavior to overcome noise
in sensing, actuation and/or dynamics. This paper studies the problems of sim-
ulation and filtering in systems with stochastic dynamics and noisy observa-
tions, with a particular interest in cases where the state belief cannot be realis-
tically approximated by a single Gaussian distribution.

Complex multimodal beliefs naturally arise in manipulation tasks where
state or action noise can make the difference between contact/separation or
between sticking/sliding. For example, the ordinary task of push-grasping a
cup of coffee into your hand in Fig. 1 illustrates the naturally occurring multi-
modality, where the cup will slide to either side of the hand and the handle will
rotate accordingly clockwise or anti-clockwise. Dogar and Srinivasa [1] used
the observation that a push-grasped object tends to cluster into two clearly dis-
tinct outcomes—inside and outside the hand—to plan robust grasp strategies.
Similarly, as illustrated in Fig. 6, a push on an object might make it rotate to ei-
ther side of the pusher, generating complex—clustered and ring-shaped—state
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Fig. 1: Multimodality during the push-grasp of a coffee cup. A small change in the initial contact between the
hand and the cup, or a small change in the hand’s motion can produce a very distinct—multimodal—outcome
either exposing (left) or hiding (right) the cup’s handle from the hand’s palm.

distributions. Multimodality and complex belief distributions have been exper-
imentally observed in a variety of manipulation actions such as planar push-
ing [2,3], ground impacts [4], and bin-picking [5].

The main contribution of this paper is a new algorithm GP-SUM to track
complex state beliefs. GP-SUM is specifically tailored to:

– Dynamic systems expressed as a GP (Gaussian Process).
– States represented as a weighted Sum of Gaussians.

We will show that the algorithm is capable of performing Bayes updates with-
out the need to either linearize the dynamic or observation models, or relying
on unimodal Gaussian approximations of the belief. This will be key to enable
efficient tracking of complex state beliefs.

In Section 4 we describe how GP-SUM operates by sampling the state dis-
tribution, given by a sum of Guassians, so it can be viewed as a sampling-based
filter. GP-SUM also maintains the basic structure of a Bayes filter by exploiting
the GP form of the dynamic and observation models, which allows a probabilis-
tic sound interpretation of each sample, so it can also be viewed as a GP-Bayes
filter.

In Section 5.1, we compare GP-SUM’s performance to other existing GP-
filtering algorithms such as GP-UKF, GP-ADF and GP-PF in a standard syn-
thetic benchmark [6,7]. GP-SUM yields better filtering results both after a single
and multiple filtering steps with a variety of metrics, and requires significantly
less samples than standard particle filtering techniques.

Finally, we also demonstrate that GP-SUM can predict the expected distri-
bution of outcomes when pushing an object. Prior experimental work [3] shows
that planar pushing produces heteroscedastic and non-Gaussian distribution
after pushes of a few centimeters, i.e., some actions are more deterministic
than others and state distributions can break down into components or become
ring-shaped. GP-SUM successfully recovers both when applied to a GP learned
model of planar pushing. We compare the results to the distributions from real
trajectories estimated by performing the same pushes 100 times.
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Both actions and sensed information determine the shape of a belief dis-
tribution and non-linearities in either when integrated over a finite time can
easily lead to non-Gaussian beliefs. This paper provides an efficient algorithm
for tracking complex distributions tailored to the case where the observation
and transition models are expressed as GPs, and the state is represented as a
weighted sum of Gaussians.

2 Related Work

Gaussian Processes (GPs) are a powerful tool to model the dynamics of com-
plex systems [5,8,9], and have been applied to different aspects of robotics in-
cluding planning and control [10,11,12], system identification [8,13,14], or fil-
tering [6,7,15]. In this work we study the problem of accurate propagation and
filtering of the state of a stochastic dynamic system. In particular, we address fil-
tering in systems whose dynamics and measurement models are learned through
GP regression, which we commonly refer to as GP-Bayes filters. Among these,
the most frequently considered are GP-EKF [15], GP-UKF [15] and GP-ADF [6].

Most GP-filters rely on the assumption that at all instants, the state distri-
bution is well captured by a single Gaussian and exploit a variety of approx-
imations to maintain that Gaussianity. For example, GP-EKF is based on the
extended Kalman filter (EKF) and linearizes the GP models to guarantee that
the final distributions are indeed Gaussian. GP-UKF is based on the unscented
Kalman filter (UKF) and predicts a Gaussian distribution for the state using an
appropriate set of samples that captures the moments of the state. Finally, GP-
ADF computes the first two moments of the state distribution by exploiting the
structure of GPs and thus returns a Gaussian distribution for the state.

GP-SUM instead is based on sampling from the state distributions and using
Gaussian mixtures to represent these probabilities. This links our algorithm to
the classical problem of particle filtering where each element of the mixture
can be seen as a sample with an associated weight and a Gaussian. As a result,
GP-SUM can be understood as a type of sampling algorithm that is tailored
to exploit the synergies between a GP-based dynamic model and a Gaussian
mixture state to enable efficient and probabilistically-sound Bayes updates. Ko
and Fox [15] provide another GP-based sampling filter, GP-PF, based on the
classical particle filter. However, when compared to GP-UKF or GP-EKF, GP-
PF is less reliable and more prone to inconsistent results [15].

In the broader context of Bayes filtering with non-linear algebraic dynamic
and observation models, multiple algorithms have been proposed to recover
non-Gaussian state distributions. For instance, there is some resemblance be-
tween GP-SUM and the algorithms Gaussian Mixture Filter (GMF) [16], Gaus-
sian Sum Filter (GSF) [17], and Gaussian Sum Particle Filtering (GSPM) [18]; all
using different techniques to propagate the state distributions as a sum of Gaus-
sians. GMF considers a Gaussian mixture model to represent the state distribu-
tion, but the covariance of all Gaussians are equal and come from sampling the
previous state distribution and computing the covariance of the resulting sam-
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ples; GP-SUM instead computes directly the covariance of the mixture from
the GP system dynamics. GSF is as a set of weighted EKFs running in parallel.
As a consequence it requires linearization of the system dynamics and obser-
vation models while GP-SUM does not. Finally GSPM, which has proved to
outperform GSF, is based on the sequential importance sampling filter (SIS)
[18]. GSPM takes samples from the importance function which is defined as
the likelihood of a state x given an observation z, p(x|z). GP-SUM instead does
not need to learn this extra mapping, p(x|z), to effectively propagate the state
distributions.

Other more task-specific algorithms also relevant to GP-SUM are the multi-
hypothesis tracking filter (MHT) [19] and the manifold particle filter (MPF) [20].
MHT is designed to solve a data association problem for multiple target track-
ing by representing the joint distribution of the targets as a Gaussian mixture.
MPF is a sample-based algorithm taylored to dynamic systems involving uni-
lateral contact constraints which induce a decomposition of the state space into
subsets of different dimension, e.g., free space versus contact space. MPF ex-
ploits an explicit model of the contact manifolds of the system to project the
distributions defined by the samples into that manifold.

An advantage of GP-SUM is that it can be viewed as both a sampling tech-
nique and a parametric filter. Therefore most of the techniques employed for
particle filtering are applicable. Similarly, GP-SUM can also be adapted to spe-
cial types of GPs such as heteroscedastic or sparse GPs. For instance, GP-SUM
can be easily combined with sparse spectrum Gaussian processes (SSGPs) in
Pan et al. [7]. Consequently, the learning, propagation and filtering of the dy-
namics can be made significantly faster.

3 Background on Gaussian process filtering

This work focuses on the classical problem of Bayes filtering where the dynam-
ics and observation models are learned through Gaussian process regression.
In this section, we introduce the reader to the concepts of Bayes filtering and
Gaussian processes.

3.1 Bayes filters

The goal of a Bayes filter is to track the state of a system, xt, in a probabilistic
setting. At time t, we consider that an action ut−1 is applied to the system mak-
ing its state evolve from xt−1 to xt. This is followed by an observation of the
state, zt. As a result, a Bayes filter computes the state distribution, p(xt), con-
ditioned on the history of previous actions and observations: p(xt|u1:t−1, z1:t).
This probability is often referred as the belief of the state at time t.

In general, a Bayes filter is composed of two steps: the prediction update
and the measurement or filter update following the terminology from [21].
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Prediction update. Given a model of the system dynamics, p(xt|xt−1, ut−1), the
prediction update computes the prediction belief, p(xt|u1:t−1, z1:t−1), as:

p(xt|u1:t−1, z1:t−1) =
∫
p(xt|xt−1, ut−1)p(xt−1|u1:t−2, z1:t−1)dxt−1 (1)

where p(xt−1|u1:t−2, z1:t−1) is the belief of the system before action ut−1. Thus
the prediction belief can be understood as the pre-observation distribution of the
state, while the belief is the post-observation distribution. In general, the inte-
gral (1) cannot be solved analytically and different approximations are used to
simplify its computation. The most common simplifications are to linearize the
dynamics of the system, as classically done in the Extended Kalman Filter, or to
directly assume that the prediction belief, i.e., the result of the integral in (1), is
Gaussian distributed [21].

Measurement update. Given a new measurement of the state, zt, the belief at
time t comes from filtering the prediction belief. The belief is recovered by using
Bayes’ rule and the observation model of the system p(zt|xt):

p(xt|u1:t−1, z1:t) =
p(zt|xt)p(xt|u1:t−1, z1:t−1)

p(zt|u1:t−1, z1:t−1)
(2)

Again, this expression cannot usually be computed in a closed-form and we
rely on approximations to estimate the new belief. Linearizing the observation
model or assuming Gaussianity of the belief are again common approaches [21].

Combining equations (1) and (2), we can express the belief in a recursive
manner as a function of the previous belief, the dynamic model, and the obser-
vation model:

p(xt|u1:t−1, z1:t) ∝ p(zt|xt)
∫
p(xt|xt−1, ut−1)p(xt−1|u1:t−2, z1:t−1)dxt−1 (3)

We will show in Section 4 an equivalent recursion equation for the prediction
belief, which is key to GP-SUM.

For known systems, we might have algebraic expressions for their dynamic
and observation models. In real systems, however, these models are often un-
known or inaccurate, and Gaussian Processes are a powerful framework to
learn them. The following subsection provides a basic introduction.

3.2 Gaussian Processes

Gaussian Processes (GPs) are a flexible non-parametric framework for func-
tion approximation [22]. In this paper we use GPs to model the dynamics and
observation models of a stochastic system. There are several advantages from
using GPs over traditional parametric models. First, GPs can learn high fidelity
models from noisy data while estimate the intrinsic noise of the system. Second,
GPs estimate the uncertainty of their predictions given the available data, hence
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measuring the quality of the regression. GPs provide the value of the expected
output together with its variance.

In classical GPs [22], the noise in the output is assumed to be Gaussian and
constant over the input: y(x) = f(x)+ ε, where f(x) is the latent or unobserved
function to regress, y(x) is a noisy observation of this function, and ε ∼ N(0, σ2)
represents zero-mean Gaussian noise with constant variance σ2.

The assumption of constant Gaussian noise together with a GP prior on the
latent function f(x) makes analytical inference possible for GPs. In practice,
to learn a GP model over f(x) you only need a set of training points, D =
{(xi, yi)}ni=1, and a kernel function, k(x, x′). Given a new input x∗, a GP assigns
a Gaussian distribution to the output y∗ = y(x∗) expressed as:

p(y∗|x∗, D, α) = N(y∗|a∗, c2∗ + σ2)

a∗ = kT∗ (K + σ2I)−1y (4)

c2∗ = k∗∗ − kT∗ (K + σ2I)−1k∗

where K is a matrix that evaluates the kernel at the training points, [K]ij =
k(xi, xj), k∗ is a vector with [k∗]i = k(xi, x∗) and k∗∗ is the value of the kernel
at x∗, k∗∗ = k(x∗, x∗). Finally, y represents the vector of observations from the
training set, and α is the set of hyperparameters, that includes σ2 together with
the kernel parameters. These are optimized during the training process.

In this work we consider the ARD-SE kernel [22] which provides smooth
representations of f(x) during GP regression and is the most common kernel
employed in the GP-literature. However, it is possible to extend our algorithm
to other kernel functions as it is done in [7].

4 GP-SUM Bayes filter

In this section we present GP-SUM, discuss its main assumptions, and describe
its computational complexity. Given that GP-SUM is a GP-Bayes filter, our main
assumption is that both the dynamics and the measurement models are repre-
sented by GPs. This implies that for any state xt−1 and action ut−1 the proba-
bilities p(xt|xt−1, ut−1) and p(zt|xt) are modeled as Gaussian.

To keep track of complex beliefs GP-SUM does not approximate them by
single Gaussians, but considers the weaker assumption that they are well ap-
proximated by sum of Gaussians. Given this assumption, in Section 4.1 we ex-
ploit that the transition and observation models are GPs to correctly propagate
the prediction belief, i.e. the pre-observation state distribution. In Section 4.2
we obtain a close-form solution for the belief expressed as a Gaussian mixture.

4.1 Updating the prediction belief

The main idea behind GP-SUM is described in Algorithm 1. Consider (1)
and (3), then the belief at time t in terms of the prediction belief is:

p(xt|u1:t−1, z1:t) ∝ p(zt|xt) · p(xt|u1:t−1, z1:t−1) (5)
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If the prediction belief at time t− 1 is approximated by a sum of Gaussians:

p(xt−1|u1:t−2, z1:t−2) =
Mt−1∑
i=1

ωt−1,i · N (xt−1|µt−1,i, Σt−1,i) (6)

where Mt−1 is the number of components of the Gaussian mixture and ωt−1,i is
the weight associated with the i-th Gaussian of the mixtureN (xt−1|µt−1,i, Σt−1,i).

Then we compute the prediction belief at time t combining (1) and (5) as:

p(xt|u1:t−1, z1:t−1) =
∫
p(xt|xt−1, ut−1)p(xt−1|u1:t−2, z1:t−1)dxt−1 ∝∫

p(xt|xt−1, ut−1)p(zt−1|xt−1)p(xt−1|u1:t−2, z1:t−2)dxt−1
(7)

Given the previous observation zt−1 and the action ut−1, the prediction be-
lief at time t can be recursively computed using the prediction belief at time t−1
together with the transition and observation models. If p(xt−1|u1:t−2, z1:t−2)
has the form of a sum of Gaussians, then we can take Mt samples from it,
{xt−1,j}Mt

j=1, and approximate (7) by:

p(xt|u1:t−1, z1:t−1) ∝
Mt∑
j=1

p(xt|xt−1,j , ut−1)p(zt−1|xt−1,j) (8)

Because the dynamics model is a GP, p(xt|xt−1,j , ut−1) is the GaussianN (xt|µt,j , Σt,j),
and p(zt−1|xt−1,j) is a constant value. As a result, we can take:

ωt,j =
p(zt−1|xt−1,j)∑Mt

k=1 p(zt−1|xt−1,k)
(9)

and express the updated prediction belief again as a Gaussian mixture:

p(xt|u1:t−1, z1:t−1) =
Mt∑
j=1

ωt,j · N (xt|µt,j , Σt,j) (10)

Algorithm 1 Prediction belief recursion

GP-SUM({µt−1,i, Σt−1,i, ωt−1,i}Mt−1

i=1 , ut−1, zt−1, Mt):
{xt−1,j}Mt

j=1 = sample({µt−1,i, Σt−1,i, ωt−1,i}Mt−1

i=1 , Mt)
for j ∈ {1, . . . ,Mt} do
µt,j = GPµ(xt−1,j , ut−1)

Σt,j = GPΣ(xt−1,j , ut−1)

ωt,j = p(zt−1|xt−1,j)
{ωt,j}Mt

j=1 = normalize_weights({ωt,j}Mt
j=1)

return {µt,j , Σt,j , ωt,j}Mt
j=1
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In the ideal case where Mt tends to infinity, the sum of Gaussians approxi-
mation of the prediction belief converges to the real distribution and the prop-
agation over time of the prediction belief remains correct. This property of GP-
SUM contrasts with most other GP-Bayes filters where the prediction belief is
approximated as a single Gaussian. In those cases, errors from previous approx-
imations inevitably accumulate over time.

Note that the weights in (9) are directly related to the likelihood of the obser-
vations. As in most sample-based algorithms, if the weights are too small before
normalization, it becomes a good strategy to re-sample or modify the number
of samples considered. In Section 5 we address this issue by re-sampling again
from the distributions while keeping the number of samples constant.

4.2 Recovering the belief from the prediction belief

After computing the prediction belief, we take the observation zt and compute
the belief as another sum of Gaussians using (5):

p(xt|u1:t−1, z1:t) ∝ p(zt|xt)
Mt∑
j=1

ωt,j · N (xt|µt,j , Σt,j)

=

Mt∑
j=1

ωt,j · p(zt|xt)N (xt|µt,j , Σt,j)

(11)

Note that if p(zt|xt)N (xt|µt,j , Σt,j) could be normalized and expressed as a
Gaussian distribution, then the belief at time t would directly be a Gaussian
mixture. In most cases, however, p(zt|xt)N (xt|µt,j , Σt,j) is not proportional to
a Gaussian. For those cases, we use standard approximations in the literature
(Algorithm 2). For instance, the algorithm GP-EKF [15] linearizes the observa-
tion model to express the previous distribution as a Gaussian.

In this work, we exploit the technique proposed by Deisenroth et al. [6] as
it preserves the first two moments of p(zt|xt)N (xt|µt,j , Σt,j) and has proven to
outperform GP-EKF [6]. This approximation assumes that p(xt, zt|u1:t−1, z1:t−1)
= p(zt|xt)p(xt|u1:t−1, z1:t−1) and p(zt|u1:t−1, z1:t−1) =

∫
p(xt, zt|u1:t−1, z1:t−1)dxt

are both Gaussians. Note that this is an approximation, and that is only true
when xt and zt are linearly related. Using this assumption and that p(zt|xt) is a
GP, p(zt|xt)N (xt|µt,j , Σt,j) can be approximated as a Gaussian by analytically
computing its first two moments [6]. As a result, we recover the belief as a sum
of Gaussians.
Algorithm 2 Belief recovery

belief_computation({µt,j , Σt,j , ωt,j}Mt
j=1, zt, Mt):

for j ∈ {1, . . . ,Mt} do
µ̂t,j , Σ̂t,j = Gaussian_approx( p(zt|xt)N (xt|µt,j , Σt,j) )
{ω̂t,j}Mt

j=1 = {ωt,j}Mt
j=1

return {µ̂t,j , Σ̂t,j , ω̂t,j}Mt
j=1
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It is key to note that this approximation is only necessary to recover the be-
lief, but does not incur in iterative filtering error. GP-SUM directly keeps track
of the prediction belief, for which the approximation is not required.

4.3 Computational complexity

The computational complexity of GP-SUM directly depends on the number of
Gaussians used at each step. For simplicity, we will now assume that at each
time step the number of components is constant, M . Note that the number of
samples taken from the prediction belief corresponds to the number of compo-
nents of the next distribution. Propagating the prediction belief one step then
requires taking M samples from the previous prediction belief and evaluating
M times the dynamics and measurement models. The cost of sampling once a
weighted sum of Gaussians is constant, O(1), while evaluating each model im-
plies computing the output of a GP with cost O(n2), where n is the size of data
used to train the GPs [22]. Therefore the overall cost of propagating the predic-
tion belief is O(Mn2+M) where n is the largest size of the training sets consid-
ered. Approximating the belief does not represent an increase inO−complexity
as it also implies O(Mn2) operations [6].

Consequently GP-SUM’s time complexity increases linearly with the size
of the Gaussian mixture. When necessary, we can reduce the cost of GP-SUM
using sparse GPs [7], which choose a sparser training set, reducing the cost from
O(Mn2) to O(Mk2) with k � n.

5 Results

We evaluate the performance of our algorithm in two different dynamic sys-
tems. The first one is a 1D synthetic benchmark for nonlinear state space mod-
els used in [6,23], where our algorithm proves superior to previous GP-Bayes
filters1. The second case studies how uncertainty propagates in a real robotic
system. We learn the stochastic dynamics of planar pushing from real data with
GP regression and then use GP-SUM to simulate the system uncertainty over-
time to capture the expected distribution of the object state.

5.1 Synthetic task: algorithm evaluation and comparison

We evaluate GP-SUM on the synthetic system proposed by Kitagawa [23], with
dynamics model:

xt+1 =
1

2
xt +

25xt
1 + x2t

+ w w ∼ N (0, 0.22) (12)

1 The implementations of GP-ADF and GP-UKF are based on [6] and can be found at
https://github.com/ICL-SML/gp-adf.

https://github.com/ICL-SML/gp-adf
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Fig. 2: Synthetic benchmark task. Dynamic model and observation model of the synthetic task in equations (12)
and (13). Notice that the dynamics are specially sensitive and non-linear around zero. Just like in the example of
the push-grasp in Fig. 1, this will lead to unstable behavior and multi-modal state distributions.

and measurement model:

zt+1 = 5 sin 2xt + v v ∼ N (0, 0.012) (13)

The system was previously used to benchmark the performance of GP-ADF [6].
Fig. 2 illustrates the models and Fig. 3 illustrates the filtering process.

The GP models for prediction and measurement are trained using 1000 sam-
ples uniformly distributed around the interval [−20, 20]. GP-SUM uses the same
number of Gaussian components M = Mt = 1000 during the entire filtering
process. The initial prior distribution of x0 is Gaussian with variance σ2

0 = 0.52

and mean µ0 ∈ [−10, 10]. We randomly pick µ0 200 times in the interval to
assess the filters in multiple scenarios. Their behavior becomes specially inter-
esting around x = 0 where the dynamics are highly nonlinear. For each value of
µ0, the filters take 10 time-steps. This procedure is repeated 300 times to average
the performance of GP-SUM, GP-ADF, GP-UKF, and GP-PF, described in Sec-
tion 2. For GP-PF, the number of particles is the same as GP-SUM components,
M = 1000.

We evaluate the error in the final state distribution of the system using 3
metrics. The most relevant is the negative log-likelihood, NLL, which measures
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Fig. 3: Belief propagation on benchmark synthetic task. The figure illustrates how GP-SUM, GP-ADF and Gauss
GP-SUM propagate the state belief three steps of dynamic-observation-dynamic updates. All three algorithms
start from a prior belief centered at zero, precisely where the benchmark dynamic system is most sensitive to
initial conditions, as illustrated in Fig. 2. As a result, the belief and prediction belief quickly become multimodal.
GP-SUM handles properly these complex distributions and its predictions are more accurate. After only one
dynamic step, the belief at t = 1 predicted by GP-SUM shows three possible modes for the state of the system,
while the other algorithms output a single Gaussian that encloses them all.
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Table 1: Comparison between GP-filters after 1 time step.
GP-ADF GP-UKF GP-SUM GP-PF

Error µ± σ µ± σ µ± σ µ± σ

NLL 0.49 ± 0.17 95.0 ± 97.0 -0.55 ± 0.34 -
Maha 0.69 ± 0.06 2.80 ± 0.72 0.67 ± 0.04 -
RMSE 2.18 ± 0.39 34.5 ± 23.1 2.18 ± 0.38 2.27 ± 0.35

Table 2: Comparison between GP-filters after 10 time steps.
GP-ADF GP-UKF GP-SUM GP-PF

Error µ± σ µ± σ µ± σ µ± σ

NLL 9.58 ± 15.68 1517 ± 7600 -0.24 ± 0.11 -
Maha 0.99 ± 0.31 8.25 ± 3.82 0.77 ± 0.06 -
RMSE 2.27 ± 0.16 13.0 ± 16.7 0.19 ± 0.02 N/A

the likelihood of the true state according to the predicted belief. We also report
the root-mean-square error, RMSE, even though it only evaluates the mean of
the belief instead of its whole distribution. Similarly, the Mahalanobis distance,
Maha, only considers the first two moments of the belief, for which we approx-
imate the belief from GP-SUM by a Gaussian. For the GP-PF we only compute
the RMSE given that particle filters do not provide close-form distributions.
Note that in all proposed metrics, low values imply better performance.

From Table 1 and Table 2, it is clear that GP-SUM outperforms the other
algorithms in all metrics and is more stable, as it obtains the lowest variance
in most of the metrics. In the first time step, GP-PF is already outperformed
by GP-SUM and GP-ADF, and after a few more time steps, particle starvation
becomes a major issue for GP-PF as the likelihood of the observations becomes
extremely low. For this reason, we did not report an RMSE value for the GP-PF
after 10 time steps. GP-UKF performance is clearly surpassed by GP-SUM and
GP-ADF after 1 and 10 time steps.

In Fig. 3 we compare the true state distributions (computed numerically)
to the distributions obtained by GP-ADF, GP-SUM, and a simplified version
of GP-SUM, Gauss GP-SUM, that takes a Gaussian approximation of GP-SUM
at each time step. It becomes clear that by allowing non-Gaussian beliefs GP-
SUM achieves higher likelihood to the actual state while better approximating
the true belief. Instead, GP-ADF’s performance is limited by assigning a single
Gaussian wide enough to cover all the high density regions.
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Fig. 4: Filter comparison on benchmark task. Evalua-
tion of the negative log-likelihood (NLL) of the distri-
butions predicted by filters GP-ADF, Gauss GP-SUM
and GP-SUM. In the first time steps, with very few ob-
servations, the belief is non-Gaussian or multi-modal.
GP-SUM handles this and outperforms both GP-ADF
and a Gauss GP-SUM, where at each step the be-
lief is approximated by a Gaussian. As time evolves,
both GP-SUM and Gauss GP-SUM converge, since the
shape of the real belief becomes uni-modal. GP-ADF
worsens with time, since in cases where the dynamics
are highly nonlinear, its predicted variance increases,
lowering the likelihood of the true state.
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Fig. 4 shows the temporal evolution of the Negative Log-Likelihood (NLL)
metric for GP-ADF, GP-SUM and Gauss GP-SUM. As the number of steps in-
creases, GP-SUM and Gauss GP-SUM converge because as GP-SUM becomes
more confident on the location of the true state, its belief becomes unimodal
and more Gaussian. The plot in Fig. 4 also shows that GP-ADF worsens its
performance over time. This is due to the system crossing states with highly
non-linear dynamics, i.e. around zero, where the variance of GP-ADF increases
over time. As a result, GP-SUM is a good fit for those systems where multi-
modality and complex behaviors can not be neglected, at the cost of a larger
computational effort.

5.2 Real task: propagating uncertainty in pushing

Planar pushing is an under-determined and sometimes undecidable physical
interaction [24]. Only under many assumptions and simplifications can be sim-
ulated efficiently [25,26]. It has been shown experimentally that due to spa-
tial and direction friction variability, the uncertainty in frictional interactions
yields stochastic pushing behavior [2,3,27]. An important observation is that
the type of push has a strong influence in the amount of expected uncertainty,
i.e., the level of "noise" in the pushing dynamics is action dependent, a.k.a., het-
eroscedastic. Fig. 5 illustrates this effect, where two different pushes repeated
multiple times lead to very different object state distributions.

A stochastic pushing simulation framework that captures heteroscedastic-
ity and non-Gaussian distributions could be relevant for planning and control.
We could generate robust plans by preferring those pushes that lead to lower
uncertainty and tight distributions for the object’s position. To this end, we pro-
pose to use GP-SUM to propagate the uncertainty of planar pushing by learning
the dynamics of the system using heteroscedastic GPs as proposed in [3].

In this case, since simulation is only concerned about forward propagation
of uncertainty, we do not consider a measurement model. As a result, when
using GP-SUM the prediction belief and the belief coincide and all the com-
ponents in the Gaussian mixtures have the same weights. In the absence of an
observation model, the simulated state distributions naturally become wider at
step. For the following results we use M = 10000 Gaussians to capture with
accuracy the complex distributions originated in long pushes.

We train the GP model of the dynamics with real data and take as inputs
the contact point between the pusher and the object, the pusher’s velocity, and

Fig. 5: Examples of stable and unstable pushes. Two different pushes whose outcome after 100 executions yields
very different distributions: (left) convergent, (right) divergent and multi-modal. Green lines are the trajectories
of the geometric center of the object and the orange ellipse approximates the final distribution of the object pose.
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Fig. 6: Outcome of an unstable long push. We execute repeatedly a long push at the center of the side of a
square-shaped object. Similar to the push-grasp in Fig. 1, the real (green) trajectories show that the block can
rotate to either side of the pushing trajectory—it is naturally unstable and undecidable [24]. The stochastic GP
model from [3] can capture that uncertainty in the form of a probabilistic distribution. The (orange) dots show the
outcome of 1000 Monte Carlo simulations of the learned GP dynamic model. GP-SUM predicts accurately the
ring-shaped distribution in a way that is not possible with standard GP-filters that assume a uni-modal Gaussian
form for the state belief.

its direction [3]. The outputs of the dynamics model are the displacement—
position and orientation—of the object relative to the pusher’s motion. Each
real push for validation is repeated 100 times at a velocity of 20mm/s. The
intrinsic noise of the system, combining the positional accuracy of the robot and
the positional accuracy of the object tracking system, has a standard deviation
lower than 1mm over the object location and lower than 0.01rad for the object
orientation.

Since the distribution of the object position easily becomes non-Gaussian,
GP-SUM obtains more accurate results than other algorithms. Fig. 6 shows an
example of a 350mm long push at the center of one of the sides of a squared ob-
ject. We compare the real pushing trajectories (green) with the outcome of run-
ning a montecarlo particle simulation on the learned GP-model and GP-SUM’s
prediction. The distribution becomes ring-shaped and multi-modal, which GP-
SUM has no trouble in recovering. This property cannot be captured by stan-
dard GP-Bayes filters that assume single Gaussian state distributions.

Being able to propagate the uncertainty of the object position over time ex-
poses interesting properties of the planar pushing system. For instance in Fig. 7
we observe different pushes repeated many times and how GP-SUM can ob-
tain a reasonable approximation of the true distribution and recover the differ-
ent amounts of noise produced by each type of push, i.e., the heteroscedasticity
of the system. Fig. 7 also shows how GP-SUM can take into account different
initial noise distributions and propagate properly the uncertainty in the object’s
position. Being able to recover these behaviors is specially useful when our goal
is to push an object to a specific region of the space as it allows to distinguish
between pushes that lead to narrower (low-variance) distributions and those
that involve multimodal or wider (high-variance) distributions.
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Fig. 7: GP-SUM capturing variations in output uncertainty. [Left] Four different straight pushes of 5cm, and
the resulting distributions of the location of the geometric center of the object. We compare the outcome of 100
repeated pushes with GP-SUM’s prediction. [Right] Similar analysis, but changing the amount of uncertainty in
the initial location of the geometric center of the object (Gaussian distribution with σ = {0, 0.5, 1, 2}mm added
on top of the noise of the Vicon tracking system). In both cases, GP-SUM successfully approximates the shape of
the output distributions.

6 Discussion and Future work

GP-Bayes filters are a powerful tool to model and track systems with complex
and noisy dynamics. Most approaches rely on the assumption of a Gaussian
belief. This assumption is an effective simplification. It enables filtering with
high frequency updates or in high dimensional systems. It is most reasonable
in systems where the local dynamics are simple, i.e., linearizable, and when
accurate observation models are readily available to continuously correct for
complex or un-modelled dynamics.

In this paper we look at situations where the Gaussian belief is less reason-
able. That is, for example, the case of contact behavior with non-smooth local
dynamics due to sudden changes in stick/slip or contact/separation, and is
the case in stochastic simulation where, without the benefit of sensor feedback,
uncertainty distributions naturally grow over time. We propose the GP-SUM
algorithm which exploits the synergies between dynamic models expressed as
GPs, and complex state distributions expressed as a weighted sum of Gaussian.

Our approach is sample-based in nature, but has the advantage of using a
minimal number of assumptions compared to other GP-filters based on single
Gaussian distributions or the linearization of the GP-models. Since GP-SUM
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preserves the probabilistic nature of a Bayes filter, it also makes a more effective
use of sampling than particle filters.

When considering GP-SUM, several aspects must be taken into account:

Number of samples. Choosing the appropriate number of samples determines
the number of Gaussians in the prediction belief and hence its expressiveness.
Adjusting the number of Gaussians over time is likely beneficial in order to
properly cover the state space. Similarly, high-dimensional states might require
higher values of Mt to ensure a proper sampling of the prediction belief. Be-
cause of the sample-based nature of GP-SUM, many techniques from sample-
based algorithms can be effectively applied such as resampling or adding ran-
domly generated components to avoid particle deprivation.

Likelihood of the observations. There is a direct relation between the weights
of the beliefs and the likelihood of the observations. We can exploit this rela-
tionship to detect when the weight of the samples degenerates and correct it by
re-sampling or modifying the number of samples.

Computational cost. Unlike non-sampling GP-filters, the cost of GP-SUM scales
linearly with the number of samples. Nevertheless, for non-linear systems we
showed that our algorithm can recover the true state distributions more accu-
rately and thus obtain better results when compared to faster algorithms such
as GP-ADF, GP-UKF or GP-PF.

GP extensions. The structure of GP-SUM is not restricted to classical GPs for
the dynamics and observation model. Other types of GPs such as HGPs or
sparse GPs can be considered. For instance, combining GP-SUM with SSGPs
[7] makes the computation more efficient.

Future research will focus on combining GP-SUM with planning and control
techniques. Simulating multimodality and noisy actions can provide a guid-
ance to chose actions that better deal with the dynamics of complex stochastic
systems.
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