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Abstract
In this work we propose a method to simulate friction in continuous multibody systems with r−A
formulation. The r−A formulation, works directly with the orientation matrix and therefore avoids the
need for Euler parameters used to produce the orientation matrix A, by using Lie-Algebraic integration.
The frictionless systems have been recently studied in detail with r−A formulation in [1]. Further, Haug
in [2], describes the equations to model friction in different mechanical joints in r−p formulation, by
resolving contact forces assuming static equilibrium. In the r−A formulation, the torques produced by
external forces act on the center of mass. Hence, the resolution of contact forces can be done under
dynamic equilibrium. This work explores the same and investigates implementation of friction in r−A
formulation. To the best of our knowledge, the results of such a study have not been reported in the
literature.
The derivation of differential algebraic equations (DAEs) of motion for a constrained N body system
with frictionless joints are covered in great detail in [1]. With the constraint manifold denoted by ΦΦΦ,
the equations of motion take the form as in equation (1) for the ith body, where subscript i indicates
correspondence to ith body in the system. Here, M is the mass matrix of the body, and f is the vector of
external forces and torques. The term C(q)λλλ represents constraint forces acting on the center of mass
of the body, where C(q) is the matrix of coefficients of constraint forces, and λλλ are the corresponding
Lagrangian multipliers. Evaluation of C(q), ΦΦΦ(q) and the operator Π′T (ΦΦΦ) is illustrated in [1].

Mi v̇i +C(q)iλλλ i = f(q, q̇)i, ∀i ∈ [1,2, . . . ,N] where ΦΦΦ(q)i = 0, C(q)i =

[
ΦΦΦr

T

Π′T (ΦΦΦ)

]
i
. (1)

Figure 1: Schematic diagram of contact forces in Cylindrical/Revolute joint

Consider bodies i and j forming a cylindrical (or revolute) pair as shown in Figure 1. The radius of the
cylindrical surface is R. The “virtual” points of action in a cylindrical/revolute joint lie on the periphery of
the ends of the cylindrical surface in contact, whose centers’ locations are given by s′′′i1 and s′′′i2 respectively.
Since the resulting constraint torques act about the center of mass qi, the constraint forces can be resolved
into contact forces acting at their “virtual” points of action, under dynamic equilibrium about qi. In local
body frame, they form the following system of linear equations:

Lfc = b Fn1 = ∥F′′′
i1∥, Fn2 = ∥F′′′

i2∥ (2a)
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where L ∈R8×6 is a constant matrix of rank 6, and Fn1 and Fn2 are the magnitudes of the normal contact
forces at the two virtual contact points. The equation (2) can be solved as fc = L+b where the pseudo-
inverse L+ needs to be computed only once for the complete simulation. The corresponding unit direction
vectors of contact forces F′′′

ik for contact points k ∈ [1,2] in body-fixed frame can be evaluated as n′′′
ik =

F′′′
ik

∥F′′′
ik∥
,n′′′

jk = −n′′′
ik. These unit normal vectors can be used to track the “virtual” contact points. In global

frame of reference, the location of virtual contact points c1, and their respective velocities ċik and ċ jk in
bodies i and j:

c1 = ri +Ai(s′′′i1 −Rn′′′
i1), c2 = ri +Ai(s′′′i2 −Rn′′′

i2). (3a)

ċik = ṙi +Aiω̃ωω
′′′
i(s

′′′
ik −Rn′′′

ik), ċ jk = ṙ j +A jω̃ωω
′′′
j(s

′′′
jk −Rn′′′

jk). (3b)

Indeed, the equations (3) differ for prismatic joints based on the cross-section of the prismatic pair.
However, the equations (2) provide solution irrespective of the type of joint. With the velocities of
virtual points of action, the slip velocities vsk and their respective direction unit vectors of relative slip
velocities sv

ik and sv
jk, can be calculated.

Friction, opposes the relative motion between two bodies in contact and hence the friction force acts in
the direction opposite to that of relative velocity. For a system of N bodies with C virtual action points,
let the scalar value of friction force at contact k ∈ [1,2, . . . ,C] be Ff k = µ(vsk).Fnk where µ(vsk) is the
coefficient of friction as a function of slip speed. For a system with N = 2 and C = 2 as shown in Figure
1, the vector Q f ∈R6N composed of friction forces and the torques generated by them can be evaluated
using the direction matrix C f ∈R6N×C as per the following equations:

Q f =


−sv

i1 −sv
i2

−c̃′′′i1 AT
i sv

i1 −c̃′′′i2 AT
i sv

i2
−sv

j1 −sv
j2
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j1 −c̃′′′j2 AT
j sv

j2

[
µ(vs1).Fn1
µ(vs2).Fn2

]
= C f (q, q̇)F f (q, q̇,λλλ ), (4)

Hence, including friction amends the equation (1) by adding the friction force as follows:

Mi v̇i +C(q)iλλλ i +Q f i = f(q, q̇)i, ∀i ∈ [1,2, . . . ,N] (5)

Then, the equations (5) can be then discretized using the schemes presented in [1]. The preliminary
results are shown in Figure 2 for a pendulum representing a revolute joint. The static and dynamic
coefficients of friction were taken as µs = 0.3 and µd = 0.2 respectively. Energy loss can be observed
in the decreasing amplitude in position plots. Stiction was also captured when the direction of rotation
changed. The work further aims to study the same for other mechanical joints.

Figure 2: Rigid pendulum: Revolute joint with friction
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