

Markov Renewal Theorem in the Series Scheme

Sergii Degtyar and Yurii Shusharin

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Sergii Degtyar, Yurii Shusharin

MARKOV RENEWAL THEOREM IN THE SERIES SCHEME

Kyiv National Economic University named after Vadym Hetman, 54/1 Prospect Peremogy 03057 Kyiv Ukraine

Abstract. The basic statements of the classical renewal theory are extended to the so-called Markov renewal equation. As a result of this extension the proof of the Markov renewal theorems for the scheme of series is given.

Key words: Markov renewal equation.

Introduction.

The classical renewal theory deals with the asymptotic properties of the solutions to the renewal equation

$$f(t) = g(t) + \int_{0}^{t} G(du)f(t-u),$$

where f is the function to be found, g is given function, and G(du) is a given probability distribution. The classical renewal theorems describe the asymptotic properties of convolutions

$$f(t) = U * g(t) = \int_{0}^{t} U(du)g(t-u), as t \to \infty,$$

where U is the potential of a homogeneous critical kernel G(du), which is an ordinary probability distribution.

The basic statements of the classical renewal theory can be extended to the so-called Markov renewal equation

$$f(x,t) = g(x,t) + \int_{E} \int_{0}^{t} G(x,dy \times du) f(y,t-u), t \ge 0, x \in E.$$

where E is a given phase space, $\ddot{G}(x, dy \times du)$ is so-called semi-Markov kernel, g(x, t) is a given function of $x \in E$, and $t \ge 0$, and f(x, t) is the function to be found. Its solution is the convolution

$$f(x,t) = U * g(x,t) = \int\limits_{E} \int\limits_{0}^{t} U(x,dy \times du) g(y,t-u), t \ge 0, x \in E.$$

where $U(x, dy \times du)$ is the potential of the semi-homogeneous kernel $G(x, dy \times du)$. Generally, the renewal theory has wide range of applications in mathematical practice. Markov renewal theorems are an analytical tool for studying the limiting behavior of Markov and related processes, including semi-Markov and regenerative processes.

Main results.

Let (E, \mathfrak{B}) be a measurable (phase) space with the countably generated σ -algebra \mathfrak{B} . We will assume, without loss of generality, that σ -algebra $\mathfrak B$ contains all one-point sets. Let us introduce a family of non-negative semi-homogeneous [3] kernels $G_{\varepsilon}(x, dy \times dt)$ which depend on a small parameter $\varepsilon > 0$.

Consider the Markov renewal equation

$$f_{\varepsilon}(x,t) = g_{\varepsilon}(x,t) + \int_{E} \int_{0}^{t} G_{\varepsilon}(x,dy \times du) f_{\varepsilon}(y,t-u), t \ge 0, x \in E,$$
 (1)

where $g_{\varepsilon}(x,t)$ is a given nonnegative $\mathfrak{B} \times \mathfrak{B}_+$ -measurable function, $f_{\varepsilon}(x,t)$ is the function to be found, \mathfrak{B}_+ is the Borel σ -algebra on $R_+=[0,\infty)$.

Next, we impose a number of restrictions. Let's assume that the kernels $G_{\varepsilon}(x,\{x\} \times dt)$ for all $x \in E$, converge to a probabilistic right-continuous function F(x,dt) which measurably depends on all $x \in E$, in that sense

$$\left| \int_{0}^{\infty} G_{\varepsilon}(x, \{x\} \times dt) \varphi(t) - \int_{0}^{\infty} F(x, dt) \varphi(t) \right| \xrightarrow{\varepsilon \to 0} 0$$
 (2)

for an arbitrary continuous bounded function $\varphi(t)$, $t \ge 0$. It follows that for all $x \in E$

$$\lim_{\varepsilon \to 0} G_{\varepsilon}(x, \{x\}) = 1,\tag{3}$$

where $G_{\varepsilon}(x,\{x\})$ is the basis of the kernel $G_{\varepsilon}(x,\{x\}\times dt)$, that is $G_{\varepsilon}(x,\{x\}) = G_{\varepsilon}(x,\{x\}\times [0,\infty))$.

Denote the basis of the kernel $G_{\varepsilon}(x, dy \times dt)$ by $G_{\varepsilon}(x, dy)$ and let

$$\lim_{\varepsilon \to 0} G_{\varepsilon}(x, E \setminus \{x\}) = 0, \tag{4}$$

Suppose there exists a function c(x) and a kernel C(x,A) on (E,\mathfrak{B}) such that for all $x\in E$

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \{ 1 - G_{\varepsilon}(x, \{x\}) \} = c(x), \tag{5}$$

$$\sup_{A \in \mathfrak{B}} \left| \frac{1}{\varepsilon} G_{\varepsilon}(x, A) - C(x, A) \right| \xrightarrow[\varepsilon \to 0]{} 0, x \notin A. \tag{6}$$

For convenience, we put $C(x,\{x\}) = 0, x \in E$. Note that based on (5) and (6) for all $x \in E$

$$|c(x)| < \infty, C(x, E) < \infty$$

Let's demand that

$$\sup_{x \in E} |c(x)| < \infty, \sup_{x \in E} C(x, E) < \infty. \tag{7}$$

We will assume that

$$\sup_{\varepsilon>0} \int_{T}^{\infty} G_{\varepsilon}(x, E \times dt) t \xrightarrow[T \to \infty]{} 0, x \in E.$$
 (8)

From this, in particular, it follows that

$$\int_{0}^{\infty} F(x, dt)t < \infty, x \in E.$$

Denote by $m(x) = \int_0^\infty F(x, dt)t$ and finally assume

$$\inf_{x \in E} m(x) > 0. \tag{9}$$

W. Feller introduced the very important notion of direct Riemann integrability.

Namely, a family of functions $g_{\varepsilon}(x,t)$ on $E \times R_+$, that depend on a small parameter $\varepsilon > 0$, is called directly Riemann-integrable if the series

$$\sum_{k=0}^{\infty} \sup_{k \le t \le k+1} g_{\varepsilon}(x, t) \tag{10}$$

$$\sup_{\varepsilon>0} \delta \sum_{k=0}^{\infty} \left\{ \sup_{k\delta \le t \le k\delta + \delta} g_{\varepsilon}(x,t) - \inf_{k\delta \le t \le k\delta + \delta} g_{\varepsilon}(x,t) \right\} \xrightarrow{\delta \to 0} 0. \tag{11}$$

Under these conditions, the improper integral

$$\int_{0}^{\infty} g_{\varepsilon}(x,t)dt$$

is the limit of the integral sums constructed for a direct partition (hence the name) of the semi-axis $[0, \infty)$ uniformly on $\varepsilon > 0$ for all $x \in E$, that is

$$\sup_{\varepsilon>0}\left|\int_{0}^{\infty}g_{\varepsilon}(x,t)dt-\delta\sum_{k=0}^{\infty}g_{\varepsilon}(x,t_{k})\right|\underset{\delta\to0}{\longrightarrow}0,$$

where $t_k \in [k\delta, k\delta + \delta]$, in contrast to the improper Riemann integral as limit of integrals over finite intervals.

That is why such a function $g_{\varepsilon}(x,t)$ is called directly Riemann-integrable.

Let the distribution function F(x, dt) be non-lattice for all $x \in E$ and there be a limit

$$\lim_{\varepsilon \to 0} \int_{0}^{\infty} g_{\varepsilon}(x, t) dt = \int_{0}^{\infty} g(x, t) dt = d(x), \quad x \in E.$$
 (12)

Each kernel K(x, A) naturally generates a linear operator K that operates in Banach space **B** bounded \mathfrak{B} -measurable function f with a norm $||f|| = \sup_{x \in E} |f(x)|$ by a formula

$$Kf(x) = \int_{E} K(x, dy) f(y).$$

Denote by M and D the operators corresponding to the kernels m(x) and

$$D(x,A) = -c(x)I(x,A) + C(x,A).$$

Thus we have proved the following theorem.

Let in conditions (2), (5), (6), (7), (8), (9),(10),(11),(12) for all $x \in E$ the probability distribution F(x, t) be non-lattice, then

$$\lim_{\substack{\varepsilon \to 0 \\ t \to \infty}} f_{\varepsilon}(x, t) = e^{u \frac{D}{M}} M^{-1} d(x)$$

for all $x \in E$.

Conclusion.

The asymptotics of the solution of the Markov renewal equation when the basis $G_{\varepsilon}(x, dy) =$ $G_{\varepsilon}(x, dy \times [0, \infty))$ of the kernel $G_{\varepsilon}(x, dy \times dt)$ close to the singular kernel I(x, dy) on a given measurable phase space (E, \mathfrak{B}) was studied in [2]. The main result of that study was formulated in the form of a theorem. At the same time, severe restrictions were imposed. Uniform convergence on $x \in E$ was required. In this paper, we prove a similar statement under weaker assumptions, namely, it is sufficient that the conditions of the theorem are satisfied for all $x \in E$. For this, a completely different idea of proof is used.

References.

1. S. Degtyar, Markov renewal limit theorems. Theory of Probability and Mathematical S. Degtyal, Markov renewal finite theorems. Theory of Probability and Mathematical Statistics, 76, pp. 33--40, 2008.
V. Shurenkov, and S. Degtyar, Markov renewal theorems in scheme of arrays, Asymptotic Analysis of Random Evolution, pp. 270--305, 2008.
V. M. Shurenkov, Ergodic Theorems and Related Problems, English transl., VSP International Science Publishers, Utrecht, 1998. MR1690361 (2000i:60002).