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Abstract
A Cosserat beam is a one-dimensional continuum whose deformation field is described by a curve in
SE (3). Let C(s)∈ SE (3) denote the displacement of the cross section. The (left-invariant) strain field in
body-fixed representation [1] is defined by the deformation measure χ̂χχ : [0,L]→ se(3) that satisfies the
kinematic relation

C′ = Cχ̂χχ. (1)

The (right-invariant) strain in spatial representation is defined by the deformation measure satisfying
C′ = χ̂χχsC. In [2, 3] this was called base-pole generalized curvature. Relation (1) allows reconstructing
the beam deformation from the strain, and thus serves as kinematic reconstruction equation.
Geometrically exact beam formulations were introduced that are formulated on SE (3). A crucial element
in such formulations is the interpolation of the spatial deformations of beam elements [4, 5]. This is
also crucial in the area of soft robotics [6, 7, 8] where the forward and inverse kinematics problem
must be solved for robotic manipulators that are made from highly flexible beam elements. In this
context, the state of the art is to assume constant curvature and piecewise constant cross sections in
quasistatic conditions. With these assumptions the deformation of a segment with length L is interpolated
as C(s) = exp( s

L X̂0), with X̂0 = log
(
C−1

0 CL
)
, with C0 = C(0) ,CL = C(L). This expression is known as

Spherical Linear Interpolation (SLERP) [9], when the beam kinematics is modeled in SO(3)×R3, and
as Screw Linear Interpolation (ScLERP) [10], when kinematics is (correctly) modeled on SE (3). The
linear interpolation is not sufficient, in particular for large deformation of long slender beams.
In this paper a cubic and quartic interpolation scheme is presented. The interpolation respects initial
and terminal values of the body-fixed strain measure. These 3rd/4th-order interpolation scheme allows
exactly reconstructing the displacement of a beam (with constant cross section or cross linearly changing
cross sections) subjected to a general wrench applied at the beam. The displacement is represented as
C(s̄) = C0 exp X̂[k] (s̄), where X̂[k] (s̄) is the kth-order approximation. Assuming X(0) = 0, the 3rd-order
approximation is

X[3] (s̄) =
(
3s̄2 −2s̄3)XL + s̄(1− s̄)2

χ̄χχ0 + s̄2 (s̄−1)dexp−1
−X̂L

χ̄χχL (2)

where XL = log
(
C−1

0 CL
)
, and χ̄χχ0 = χ̄χχ (0) , χ̄χχL = χ̄χχ (L), with χ̄χχ = Lχχχ , and s̄= s/L. The 4th-order approx-

imation additionally allows prescribing χ̄χχ
′ at the beam boundaries. An additional expression is available

for the case where X(0) ̸= 0 or X(L) ̸= 0. The latter is important for loaded beams. The presented
equations are derived by higher-order approximation of the Magnus expansion of the (local) kinematic
reconstruction equation χχχ = dexp−X̂X′ [11].
It is shown that this parameterization is singularity free, and applicable for singularity avoiding handling
of slender semi-deformable objects (SDLO), i.e. deformable element including rigid parts as connectors.
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[5] J. Tomec and G. Jelenić, “Momentum and near-energy conserving/decaying time integrator for
beams with higher-order interpolation on SE(3),” Computer Methods in Applied Mechanics and
Engineering, vol. 419, p. 116665, 2024.

[6] S. Grazioso, G. Di Gironimo, and B. Siciliano, “A geometrically exact model for soft continuum
robots: The finite element deformation space formulation,” Soft robotics, vol. 6, no. 6, pp. 790–811,
2019.

[7] S. Briot and F. Boyer, “A geometrically exact assumed strain modes approach for the geometrico-
and kinemato-static modelings of continuum parallel robots,” IEEE Transactions on Robotics,
vol. 39, no. 2, pp. 1527–1543, 2022.

[8] J. Zhang, Q. Fang, P. Xiang, D. Sun, Y. Xue, R. Jin, K. Qiu, R. Xiong, Y. Wang, and H. Lu,
“A survey on design, actuation, modeling, and control of continuum robot,” Cyborg and Bionic
Systems, 2022.

[9] K. Shoemake, “Animating rotation with quaternion curves,” in Proceedings of the 12th annual
conference on Computer graphics and interactive techniques, 1985, pp. 245–254.

[10] L. Kavan, S. Collins, C. O’Sullivan, and J. Zara, “Dual quaternions for rigid transformation blend-
ing,” Trinity College Dublin, vol. 5, 2006.

[11] A. Müller, “Approximation of finite rigid body motions from velocity fields,” ZAMM-Journal of Ap-
plied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied
Mathematics and Mechanics, vol. 90, no. 6, pp. 514–521, 2010.


