
EasyChair Preprint
№ 10749

Mapping Floodwater Using High-Resolution
Satellite Imagery and Machine Learning: Insights
from the STAC Overflow Challenge (Short Essay
for Writing Demonstration)

Tashin Ahmed

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 20, 2023



Mapping Floodwater using High-Resolution Satellite Imagery and Machine
Learning: Insights from the STAC Overflow Challenge

(Short Essay for Writing Demonstration)

Tashin Ahmed
AriSaf Tech

Yokohama, Kanagawa, Japan
tashin@arisaftech.co.jp

Abstract

Floods, being the most frequently occurring and economi-
cally detrimental natural disasters on a global scale, require
precise monitoring in order to facilitate efficient response and
risk evaluation. This research paper presents a comprehensive
analysis of the STAC Overflow: Map Floodwater from Radar
Imagery competition, which is a worldwide endeavor that
seeks to enhance flood mapping by utilizing machine learning
techniques on high-resolution synthetic-aperture radar (SAR)
imagery. The utilization of the Sentinel-1 mission’s C-band
Synthetic Aperture Radar (SAR) data was employed in this
challenge, taking advantage of its ability to provide imag-
ing capabilities unaffected by weather conditions and oper-
ational during both day and night. The dataset used in the
competition was curated by Cloud to Street and Microsoft AI
for Earth. It comprised satellite photos from the years 2016
to 2020, enabling the creation and assessment of flood map-
ping algorithms. The competition received contributions from
over 660 individuals globally, resulting in a total of more than
1,400 entries.

Introduction
According to the World Health Organization, floods have
had extensive consequences, impacting a population exceed-
ing two billion inhabitants from 1998 to 2017. The intensi-
fication of severe weather phenomena as a result of global
warming underscores the imperative need for precise flood
monitoring. Conventional approaches, which heavily rely on
ground-based observations obtained from rain and stream
gauges, provide flood information that is limited in spatial
coverage and entails significant expenses. The utilization of
synthetic-aperture radar (SAR) images, namely the C-band
SAR data obtained from the Sentinel-1 mission, has become
increasingly significant in the realm of flood detection. The
ability of this technology to effectively traverse diverse air
barriers confers a significant benefit in the process of map-
ping floods under difficult circumstances.

The primary focus of the STAC Overflow challenge re-
volves around the utilization of machine learning techniques
for the purpose of detecting floodwater in synthetic aper-
ture radar (SAR) imagery. The dataset consists of Sentinel-1
radar images and their corresponding metadata, providing

a valuable chance to develop novel models for classifying
floodwater at a pixel level. Radar imagery provides a dis-
tinctive vantage point that facilitates the identification of fea-
tures even in challenging circumstances, including situations
including vegetation, cloud cover, and limited illumination.

Challenge Objective

The primary objective of the STAC Overflow competition
was to leverage the capabilities of machine learning in order
to accurately map floodwater using high-resolution satellite
imagery. The competition dataset comprises Sentinel-1 Syn-
thetic Aperture Radar (SAR) pictures obtained from 2016 to
2020. These photos were revised and annotated by Cloud to
Street and are now available for access through Microsoft’s
Planetary Computer. The integration of extensive environ-
mental datasets within the Planetary Computer facilitates
the utilization of artificial intelligence by scientists, devel-
opers, and policymakers to effectively tackle environmental
concerns. The main aim of this study was to create mod-
els that could effectively utilize Synthetic Aperture Radar
(SAR) imagery in order to improve the accuracy of flood
mapping. This improvement would subsequently boost dis-
aster preparedness, risk assessment, and response methods.

Dataset Features

The collection consists of Sentinel-1 radar pictures that are
recorded in the form of GeoTIFF files. The presented photos
include measurements of dual polarization, specifically VV
(vertical transmit, vertical receive) and VH (vertical trans-
mit, horizontal receive) [3]. Microwave frequency measure-
ments are of significant importance in enhancing various
physical characteristics of a given scene. Each image in the
dataset has dimensions of 512 × 512 [4] pixels and repre-
sents the quantification of reflected energy in decibels (dB).
These images span a range of both negative and positive val-
ues. Pixels that possess a value of 0.0 are indicative of data
that is absent or missing. The training dataset comprises 542
chips obtained from 13 flood episodes. Each chip is accom-
panied by labels in GeoTIFF format, indicating the presence
of water, absence of water, or missing data.



Performance Metric
The assessment of model performance relies on the utiliza-
tion of the Jaccard index, which is alternatively referred to
as the Generalized Intersection over Union (IoU). This met-
ric quantifies the resemblance between two sets of labels by
evaluating the proportion of overlapping pixels in relation
to the combined number of non-missing pixels. The calcu-
lation of the Jaccard index is limited to valid input pixels,
with missing data being excluded. A greater numerical value
signifies enhanced precision. The Jaccard index can be ex-
pressed mathematically as follows:

The formula J(A,B) represents the Jaccard similarity coef-
ficient, which is calculated by dividing the cardinality of the
intersection of sets A and B by the sum of the cardinalities
of sets A and B, minus the cardinality of their intersection.

J(A,B) = |AB|/|A|+ |B| − |AB|
In this context, the symbol A denotes the collection

of pixels that are accurately classified as true, while the
symbol B represents the collection of pixels that are
anticipated to be true. The computation of the Jaccard
index in Python can be readily performed by utilizing the
sklearn.metrics.jaccardscore(ytrue, ypred, average =

′

binary′) function provided by the scikit-learn library.

Results and Contributions
The competition witnessed significant participation, with
individuals from various regions globally submitting over
1,400 ideas. The evaluation of performance utilized the In-
tersection over Union (IoU) metric [6], which involved the
comparison of predicted picture pixels with the correspond-
ing ground truth pixels. The benchmark solution, which uti-
lized a ResNet-34 [2] encoder and U-Net decoder, attained
an Intersection over Union (IoU) value of 0.44. Neverthe-
less, in a span of seven days, numerous teams managed to
exceed this standard, thereby demonstrating the efficacy of
synthetic aperture radar (SAR) imaging and machine learn-
ing techniques in the field of flood mapping.

The highest-performing models demonstrated Intersec-
tion over Union (IoU) scores of 0.80, indicating signifi-
cant advancements compared to the benchmark. The utiliza-
tion of the Planetary Computer STAC API in these mod-
els facilitated the successful integration of additional ele-
vation data and global surface water data, resulting in an
improved comprehension of geographical phenomena. The
successful methodologies showcased a fusion of U-Net and
U-Net++ [8] convolutional neural networks (CNNs) along-
side gradient-boosted decision trees [9, 5, 7]. Furthermore,
the researchers also investigated novel methodologies, in-
cluding adversarial training and picture augmentations, in
order to effectively tackle the issue of label imbalances and
improve the quality of the training data.

Approaches of Top Participants
The top participants elucidated their methodologies, provid-
ing valuable perspectives on their techniques. The employed
methodologies included the implementation of U-Net mod-
els, classification at the pixel level, mathematical equations

for flood detection, and the utilization of ensemble tech-
niques. Significantly, a hybrid approach that integrates pixel-
by-pixel categorization and mathematical formulas has ex-
hibited efficacy in accurately detecting and quantifying in-
stances of severe floods. The use of NASADEM [1] eleva-
tion data resulted in a notable enhancement of the models’
performance.

Conclusion
The STAC Overflow challenge brought attention to the pos-
sibilities of machine learning and high-resolution synthetic
aperture radar (SAR) imagery in enhancing the precision of
flood mapping. The models that demonstrated superior per-
formance exhibited inventive techniques and original strate-
gies, hence providing improved insights into the intricate
process of floodwater detection. The use of these technolo-
gies carries significant consequences for the field of disaster
management and response. They enable the timely and pre-
cise mapping of floods, hence enhancing the evaluation of
risks and preparedness measures. The models that were cre-
ated as a result of this competition have been made acces-
sible to the general public, thereby aiding in the continuous
endeavors to tackle worldwide flood-related issues.

This short essay covered the results of an online AI com-
petition1. Top competitors have experimented with many
methods in search of the best result. Readers can get the best
result and necessary documents in the DrivenData GitHub2

repository.
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