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Abstract—Performance bottlenecks resulting in high response
times and low throughput of software systems can ruin the
reputation of the companies that rely on them. Almost two-thirds
of performance bottlenecks are triggered on specific input values.
However, finding the input values for performance test cases that
can identify performance bottlenecks in a large-scale complex
system within a reasonable amount of time is a cumbersome,
cost-intensive, and time-consuming task. The reason is that there
can be numerous combinations of test input values to explore in
a limited amount of time. This paper presents PerfXRL, a novel
approach for finding those combinations of input values that can
reveal performance bottlenecks in the system under test. Our
approach uses reinforcement learning to explore a large input
space comprising combinations of input values and to learn to
focus on those areas of the input space which trigger performance
bottlenecks. The experimental results show that PerfxRL can
detect 72% more performance bottlenecks than random testing
by only exploring the 25% of the input space.

Keywords-Performance testing, reinforcement learning, deep
neural network, test data generation

I. INTRODUCTION

Due to the widespread availability of high-speed Internet,
the level of expectation of the users with respect to the
performance of web-based software systems has changed
dramatically [1]. For instance, about 40% of the customers
will abandon a web application if the response time is greater
than 3 seconds [2]. Furthermore, Amazon, a leading online
retailer, reports that 100 milliseconds (ms) additional delay in
response time could cost them 1% drop in sales [3]. Therefore,
ensuring the reliability and efficiency of a software system is
imperative for such companies and the overall success of the
software projects.

During the software development and maintenance phase,
identifying and fixing the performance bottlenecks of a system
under test (SUT) is one of the most critical and challenging
tasks for developers [4]. There are high chances of the system
crashing due to performance bottlenecks than due to system
failures [5]. Performance bottlenecks are software defects,
which degrade the performance of the SUT unexpectedly [4].
The primary purpose of performance testing is to find perfor-
mance defects [5]. For example, in stress testing, which is a
type of performance testing, test engineers create test cases in
order to identify the scenarios which will potentially degrade
the performance of the SUT or cause a failure [6]. These test
cases contain a sequence of actions (e.g., sending an HTTP

request to the SUT) and test inputs for those actions (e.g.,
input parameters for HTTP requests).

In our previous work [7], we proposed an approach to find
the worst sequence of actions that maximizes the resource uti-
lization on the SUT using a genetic algorithm. We investigated
how the sequence and frequency of user interactions impact
the performance of the SUT. In this paper, we aim at finding
test input values which worsen the performance of the SUT
using reinforcement learning.

In general, two-thirds of the performance bottlenecks are
triggered only on specific input values [4]. However, find-
ing those input values for performance test cases that can
identify performance bottlenecks in a large-scale complex
system within a reasonable amount of time is a notoriously
difficult and expensive task [4]. The reason is that there can
be numerous combinations of test input values and executing
one such combination against the SUT can take a considerable
amount of time. Thus, it is almost impossible for test engineers
to exhaustively test every possible combination. The problem
becomes even more challenging when the SUT is a black-
box. This means that we cannot inspect the internal system
dynamics. The only way to interact with the SUT and monitor
different key performance indicators (KPIs) of the SUT is
through public interfaces and external observations during the
execution of the SUT, respectively.

In most cases, test input values for performance test cases
are either (1) created manually by the test engineers based on
their experiences and intuitions, (2) calculated by performance
profilers, (3) collected during the normal usage of the SUT,
or (4) extracted from crash reports sent by the customers [8].
However, there are drawbacks to all of these approaches:
1) Test engineers need to have rigorous domain knowledge

about the SUT in order to create test input values manually.
2) Majority of the performance profilers require access to

the source code of the SUT which is often infeasible. In
addition, they require test inputs to instrument the program
under test for performance profiling.

3) Test input values collected during the normal usage rep-
resent the most common combinations of the input values
executed by the users. However, they miss the rare and
infrequent yet problematic combinations.

4) Acquiring the test input values after the system has already
crashed in the production environment is not a good
strategy because it damages the reputation of a company.



In order to address the above issues, we formulate the
test data generation problem for performance test cases as a
reinforcement learning problem. Reinforcement learning (RL)
is a class of machine learning techniques where an agent
learns to interact with an unknown environment in order to
accomplish a given goal through a trial and error process [9].
In recent years, RL techniques have been used to solve a
wide variety of problems [10]. In our case, the unknown
environment is the SUT and the agent is a tester which
interacts with the SUT by executing performance test cases
(e.g., sequence of test inputs) with different combinations of
the input parameter values. The purpose of the agent is to find
the combinations of input parameter values which degrade the
performance of the SUT. The contributions of this paper are
as follows:
1) We present an approach for Performance EXploration us-

ing RL (PerfXRL) to explore a large space of combinations
of the input parameter values in order to find performance
bottlenecks in a black-box system without any prior domain
knowledge. Our approach uses Dueling Deep Q-Network
(DDQN) [11], which is an RL technique. To the best of our
knowledge, we are not aware of any existing performance
testing approaches that employ reinforcement learning for
finding performance bottlenecks.

2) We develop tool support for our approach in Python using
Keras-rl [12] library to automate the exploration process.

3) We empirically evaluate our approach and show that Per-
fXRL is able to detect 72% more performance bottlenecks
than random testing.

The rest of the paper is structured as follows: Section II
provides an introduction to reinforcement learning. In Sec-
tion III, we describe our approach. We empirically evaluate our
approach in Section IV. Section V presents an overview of the
related work. Section VI specifies some threats to the validity
of this work. Finally, Section VII discusses conclusions and
future work.

II. REINFORCEMENT LEARNING

Reinforcement learning (RL) is a reward-driven machine
learning technique in which an agent learns by interacting with
an unknown environment in order to accomplish a goal. The
agent collects feedback (or a reward) from the environment
by performing an action according to the current state of
the environment. The goal of the agent is to maximize the
expected cumulative rewards over time by finding the optimal
(or a near-optimal) sequence of actions.

An RL process can be characterized as a Markov deci-
sion process (MDP). The process is represented as a tuple
〈S,A, P,R, γ〉, where
• S is a finite set of states of the environment;
• A represents a finite set of permissible actions;
• P : S ×A→ S is a transition function;
• R : S ×A→ R is a reward function;
• γ ∈ [0, 1] is a discount factor.
At every time step t, the agent observes the current state st ∈
S and then it performs an action at ∈ A. After each action,

the agent receives a scalar reward rt+1 ∼ R(st, at)
1 from the

environment, as well as the next state st+1 ∼ P (st, at).
The agent chooses an action according to a policy π which

maps the states of the environment to the actions which can
be performed in those states. The objective of RL is to find
an optimal policy π∗ which maximizes the total excepted
discounted return. The total expected discounted return G at
a time step t is specified as Gt

.
= ΣTk=t+1γ

k−t−1R(sk, ak),
where T is the maximum number of time steps in a finite
MDP. This duration is known as an episode.

In order to find an optimal policy, we use an action-value
function. The action-value function Qπ(s, a)

.
= Eπ[Gt|st =

s, at = a] defines the best possible reward obtained by
performing an action at at a state st while following policy
π. Using the action-value function Q, the agent can select the
optimal or a near-optimal action at every state in order to max-
imize the Gt. Hence, we can define the optimal policy π∗ in
terms of action-value function: π∗ = argmaxπQ

π(s, a)∀s ∈
S, ∀a ∈ A. This implies that we can compute the optimal
policy π∗ by calculating the optimal action-value function.
However, in practice, computing the exact optimal action-value
function within a reasonable amount of time is often infeasible.
Instead, we use an iterative algorithm, called Q-Learning [13],
to approximate the action-value function. The Q-Learning
algorithm estimates the optimal action-value function with the
following update rule:

Qt+1(st, at) = Qt(st, at) (1)
+ α(rt+1 + γmaxaQt(st+1, a)−Qt(st, at))

where α ∈ (0, 1] is the learning rate.
In a traditional Q-Learning algorithm, a lookup table is used

to store and update Q values for each pair of states and actions.
However, this method is not practical for a large number of
states and actions. In order to alleviate this problem, Deep Q
Networks (DQN) [14] algorithm is used where a neural net-
work [15] is employed as a function approximator to estimate
the action-value function such as Q(s, a; θ) ≈ Q(s, a), where
θ represents a set of adjustable parameters of the function
approximator. Another benefit of using DQN is that the agent
can generalize the knowledge from the observed states to the
unseen states.

Wang et al. [11] proposed a new approach called Dueling
DQN (DDQN) where they used a new dueling neural network
architecture for Q values approximation. In this architecture,
they separately estimate two functions: state value function
and state-dependent action advantage function. The estimated
values from these functions are used to calculate the Q
values. The dueling architecture allows the agent to learn the
significance of states without learning the value of each action
for each state. In this paper, we use DDQN algorithm to train
our agent.

1We follow the conventions from the book of Sutton et al. [9] where they
use rt+1 to denote the reward in response to action at in state st.



III. PERFXRL

The proposed PerfXRL approach uses RL to search for
performance bottlenecks in a black-box SUT without any
prior domain knowledge about the SUT (see Figure 1). It
explores the performance of the SUT by executing different
combinations of the input values against it. The objective of
PerfXRL is to concentrate the search to those areas of the
input space which can reveal performance bottlenecks and to
find the maximum number of combinations of the input values
which can trigger the performance bottlenecks in the SUT. We
refer to those combinations as good combinations.

In the following section, we describe an example, formulate
the input data generation problem as an RL problem, and
present our approach and its components in detail.

A. Example

Consider a hypothetical Closed-source Black-box SUT
(CBS), which accepts three input parameters. Each input
parameter ranges from 1 to 100, which in total represent an
input space of 106 combinations. The main challenge is to find
a subset of combinations of the input values which trigger per-
formance bottlenecks (e.g., resource-intensive computations
on the SUT), without executing every combination. In the
following sections, we use this example to explain different
components of our approach and show how our approach can
be applied to find performance bottlenecks.

B. RL formulation

The test data generation problem for performance testing
can be represented as a search problem where we have a
large input space S containing all possible combinations of
input values. The aim is to find the complete or near-complete
set of combinations of input values B ⊂ S that trigger re-
source intensive computations that are reflected (observed) as a
degradation of the performance, for instance, lower throughput
and higher response time. We refer to these observations as
performance bottlenecks, while the set of inputs that trigger
them are the values of interest which we denote by the set
of good combinations B with respect to our approach. In
this paper, we aim to solve this problem using RL, where
an agent effectively explores different combinations of the
test input values and tries to find the performance bottlenecks
by following the feedback (or reward) from the environment
(SUT). This is a continuous process where the agent creates a
new combination of test input values by suggesting an action to
the environment. The environment executes the newly created
combination against the SUT and returns the reward to the
agent. The reward is used by the agent to improve the selection
of its future actions. Furthermore, we maintain a list of all the
good combinations of input values which have been executed
so far by the agent. The list can later be used by developers
for performance debugging.

In the following, we define the fundamental components
of our RL process including state representation S, reward
function R, action space A, transition function P and agent’s
policy π.

a) State space: A state st ∈ S is a vector of input
values {v1t , v2t , . . . , vNt } at time step t where N is a number
of inputs to the SUT. In other words, a state s represents a
single combination of input values.

For example, SCBS denotes the input space of the CBS. We
have identified three input parameters for the CBS where each
parameter ranges from 1 to 100. These input parameters define
the input space SCBS for our RL agent where each input
parameter represents a dimension in the input space SCBS .
The size of the input space SCBS is 106 (i.e., the total number
of combinations of the input values).

b) Action space: The agent observes the current state st
(i.e., the current combination of input values) and provides
an action at to the environment. Based on the action at, the
environment modifies the st in order to produce the next state
st+1 (i.e., a new combination of input values). Thus, we can
specify the action space A as a set of potential modifications
that can be made to the current state in order to produce the
next state. At every time step t, based on the selected action
the agent either increases or decreases a single input value in
the current state in order to get the next state:

A = {ai|i ∈ [1, 2, . . . , N ∗ 2]}

ai =

{
v
(i+1)÷2
t+1 ← v

(i+1)÷2
t + 1 if i is odd

vi÷2t+1 ← vi÷2t − 1 if i is even

We have two possible operations (i.e., increment and decre-
ment) for every input parameter; thus, the size of the action
space A for our approach is N ∗ 2 . For example, the size of
the action space ACBS of the CBS is six because we have
three input parameters. Table I lists all the actions and how
they modify the current state in order to get the next state. In
this paper, we have discussed only integer input parameters;
however, our approach can easily be used with other types of
inputs (e.g., string, float) by modifying the action and input
space accordingly.

TABLE I
ACTION SPACE OF THE CBS

Action State modification Example: if st = {84, 65, 86}
then st+1

a1 v1t+1 ← v1t + 1 {85, 65, 86}
a2 v1t+1 ← v1t − 1 {83, 65, 86}
a3 v2t+1 ← v2t + 1 {84, 66, 86}
a4 v2t+1 ← v2t − 1 {84, 64, 86}
a5 v3t+1 ← v3t + 1 {84, 65, 87}
a6 v3t+1 ← v3t − 1 {84, 65, 85}

c) Transition function: A transition function P accepts a
state and an action as inputs and returns a new state. In Markov
chains, the function is stochastic for a non-deterministic envi-
ronment. However, in our case, the environment is determin-
istic. It implies that given the current state and the selected
action, we can calculate the exact outcome of the transition
function at any time step.

d) Policy: Our agent uses ε-greedy policy to select
actions. The ε-greedy policy is designed to select either a



Fig. 1. PerfXRL (Adapted from [9])

random action among from available actions with probability
ε ∈ [0, 1] or the best action based on the Q values, with
probability 1−ε. Introducing bounded randomness in selecting
an action inspires the agent to explore the input space as well
as guarantees that the agent does not get stuck in a poor
strategy. ε is an algorithm parameter. In our case, we use an
adaptive value of ε which decreases linearly during training,
causing the agent to favor exploration at first and exploitation
at the later stages of training.

e) Reward: The reward value is the primary basis for
updating the policy; if the chosen action by the policy is
followed by a low reward, then the policy may be updated
to choose some other action on that state in the future. The
goal of the agent is to maximize the cumulative discounted
reward G. Hence, the reward function R should be defined to
guide the agent towards good solutions for the given objective.

In our case, the objective is to find the combinations
of input values which trigger the performance bottlenecks.
We use the elapsed execution time of the SUT for a given
combination of the input values as a performance bottleneck
indicator. The rationale here is that the elapsed execution time
of the SUT for those combinations of input values would
be higher than a given acceptable performance threshold L
which will cause resource-intensive computations on SUT,
and those combinations are most likely to cause performance
bottlenecks. We can define our reward rLt+1:

rLt+1 =

{
x ∈ Z>0 if E(st+1) > L
x ∈ Z<0 otherwise.

(2)

where E is an executor function which runs the performance
test cases using the provided combination of the input values
st+1 against the SUT and returns the elapsed execution time of
the test cases in seconds. In summary, Equation (2) specifies
that if the elapsed execution time of the combination st+1 is
more than the given acceptable performance threshold L, the
combination st+1 has triggered a performance bottleneck on
the SUT and, therefore, the agent receives a positive reward
(i.e., a positive integer).

We use the elapsed execution time as the KPI because
it is widely used for performance evaluation. However, our
approach can utilize other KPIs, such as CPU load, memory
or disk usage for reward calculation by updating the reward
function.

The executor function ECBS runs the CBS using the given
input parameter values and returns the elapsed execution time
of the SUT. Let us assume s0 = {5, 6, 9} and L = 2, where
s0 is the current state and L is the performance threshold. The
agent observes the current state s0 and selects the action a3
among all the actions listed in Table I. Then, based on the
selected action, the environment computes the next state s1 =
{5, 7, 9} and the executor function for s1: ECBS(s1) = 3.
Since ECBS(s1) > L, the agent gets the positive reward for
performing the action a3 on the state s0: rL1 = 10. A positive
reward signals the agent that it took a good action on the given
state. Therefore, the agent would increase the probability of
selecting that action in the future for that state.

C. Finding bottlenecks

We train our agent in an episodic framework. We simulate
a specific number of episodes. In every episode, the agent
starts from a random state and performs a fixed number of
training steps. In each step, the agent suggests an action
to the environment which computes a new combination of
input values based on the proposed action and the current
combination of input values. Next, the environment executes
the newly created combination of input values against the SUT
and calculates the reward. Once the agent has performed the
fixed amount of steps, the episode is ended. Thereupon, the
environment begins the new episode by generating a random
combination of input values. Starting every episode from
a random combination of input values allows the agent to
explore different regions of the input space in each episode.
Both parameters, number of episodes (Ep) and number of steps
in an episode (EpSteps), mainly depend on the complexity of
the SUT and the duration of test runs against the SUT and
vary from case to case.

We use DDQN algorithm to train our agent. In DDQN, the
agent uses a deep neural network (DNN) [15] to implement
a policy called policy network. We provide the last five states
as input to the policy network instead of the only current
state. Preliminary experiments showed that this modification
increases the learning capability of our policy network signifi-
cantly allowing it to learn about dependencies among input
values. The policy network returns Q values for possible
actions. Then, the agent suggests either the action with the
highest Q value or a random action for exploration with



probability 1−ε or ε, respectively, to the environment in order
to produce the next state.

Furthermore, the agent stores the experience (i.e., current
state st, action at, next state st+1, and reward rt+1), at each
time step t, in a cyclic buffer, called replay memory. These
stored experiences are uniformly sampled from the replay
memory to train the neural network. This method is known
as experience replay [16]. There are two main benefits of
using this method: it reduces the variance of learning updates
(see Equation (1)), because the consecutive updates are not
temporally correlated, and allows reusing stored experiences
for multiple learning updates to increase the learning efficiency
of the agent.

IV. EVALUATION

In this section, we experimentally evaluate PerfXRL by
comparing it against random testing. In random testing, we
uniformly sample an input value combination without replace-
ment from the input space of the SUT for a given number
of times. We choose random testing because it is a robust
approach [17], [18] as compared to many other systematic
testing approaches. Hamlet [19] recommended using random
testing for a large and irregular input space.

In the rest of this section, we first describe the subject
application used for evaluation, then we discuss the results.

A. Subject application

We use the reference web application RUBiS [20] as a
subject application in our experiments. RUBiS is a web-
based application that implements the core functionality of
an auction site. It has been widely used in academia for
performance evaluation, with over 300 citations on Google
Scholar2. We use an Apache3 2.4.29 web server with PHP4

7.2.10 to host the front-end of the application. The backend
database is MySQL5 14.14.

The inputs to RUBiS can only be provided via HTTP
requests. We define a performance test case for RUBiS as
a sequence of three URLs listed in the last column of Table
II, that are used in HTTP requests to RUBiS. These URLs
require four input parameters values. Thus, a state st ∈
SRUBiS can be represented as a combination of input values
st = {CIDt, RIDt, IIDt, UIDt} at time step t. Even though
the input parameters are in different URLs and are accessed
sequentially, we consider them as an atomic definition of the
state. The size of the input space SRUBiS is 3 100 000 (i.e.,
the total number of combinations of the input values). The
size of the action space ARUBiS for RUBiS is eight because
we have four input parameters.

In order to calculate the reward rt+1 for the agent, we
need to define the executor function ERUBiS for RUBiS. The

2http://scholar.google.com/scholar?q=Specification+and+Implementation+of+
Dynamic+Web+Site+Benchmarks

3https://httpd.apache.org/
4https://secure.php.net/
5https://www.mysql.com/
6The input parameter category name (CN) is not listed as an input parameter

in the table because its value depends on the value of input parameter CID.

TABLE II
RUBIS INPUT PARAMETERS6

Input parameter Range URL
Category ID (CID) [1, 20] /SearchItemsByRegion.php?category=

CID&categoryName=CN&region=RIDRegion ID (RID) [1, 62]
Item ID (IID) [1, 50] /ViewItem.php?itemId=IID
User ID (UID) [1, 50] /ViewUserInfo.php?userId=UID

executor function ERUBiS(st+1) runs the RUBiS performance
test case using the input values st+1 and returns the total
elapsed execution time of the URL requests.

In order to measure the efficiency of PerfXRL, we need to
know all the existing performance bottlenecks in RUBiS which
we can compare against the number of bottlenecks identified
by PerfXRL. For that purpose, we performed exhaustive
performance testing of RUBiS by measuring its performance
(i.e., the elapsed execution time of the RUBiS performance
test case) against all possible combinations of the input values
using the MBPeT [21] tool. Durin this experiemnt, we ob-
served that the input values have no considerable impact on the
performance of RUBiS. Thus, we have uniformly injected 20
clusters of artificial performance bottlenecks. Figure 2 shows
the distribution of bottleneck clusters where each diamond
shape represents one cluster, and the values on the diamonds
indicate the identifier of the clusters. A cluster of bottlenecks
would invoke computationally expensive operations and in-
crease the elapsed execution time of the RUBiS performance
test case by approximately 5 seconds if the given input values
are within certain ranges. For instance, a bottleneck cluster
with an identifier 19 would be triggered if the given combi-
nation of input values {CID,RID, IID,UID} satisfies the
following condition:

2 ≤ CID ≤ 4 ∧ 5 ≤ RID ≤ 21 ∧ 6 ≤ IID ≤ 22

∧ 13 ≤ UID ≤ 29

The reason for injecting clusters of bottlenecks instead of in-
dividual bottlenecks is that the performance problems usually
tend to affect a group of combinations contrary to a single
combination. Since each injected performance bottleneck adds
a delay of 5 seconds to the elapsed execution time of the
performance test, we set the value L to 5 and use the following
equation for reward calculation:

rLt+1 =

{
10 if E(st+1) > 5

−1 otherwise.

In our preliminary tests, we got good results by setting the
positive and negative reward to 10 and -1, respectively.

We repeated each experiment 30 times to establish the
statistical significance of the results. For every experiment,
the approach under evaluation and the SUT ran on different
machines. Each machine featured an Intel Core i7-3770K
CPU, 16 GB of memory, 7200 rpm hard drive, and Ubuntu
18.04 Operating System. To reduce the network latency, the
machines were connected via a 1Gb Ethernet connection in an
isolated environment.
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Fig. 2. Uniformly distributed clusters of bottlenecks in RUBiS

B. Results
The purpose of our evaluation is to measure the effec-

tiveness of PerfXRL by comparing it against against random
testing. We run PerfXRL and random testing on RUBiS. We
used the following parameters for PerfXRL:
• Number of training steps per episode: 100
• Number of episodes: 7750, in total PerfXRL performs 775

000 training steps. This means that PerfXRL can execute
775 000 combinations of input values against the SUT which
is 25% of the total input space.

• Epsilon ε: the value linearly decays over the total number
of training steps from 1 to 0.1

• Discount factor γ: 0.99
• Size of the replay memory: 500 000
• Policy network: we use three fully-connected layers with

32 nodes. The last layer of the network uses the linear [22]
activation function, but the rest of the layers use the Rectified
Linear Unit (ReLU) [23] activation function. We use the
Adam [24] optimization algorithm for our network with the
learning rate (lr) is set to 0.001.
Figure 3 shows the cumulative number of injected perfor-

mance bottleneck identified by PerfXRL and random testing
after executing a certain number of input value combinations.
The solid lines in the figure show the average values, while
the shaded region around the lines represents the standard
deviation. Both approaches performed similarly for the first
150 000 input value combinations, but after that point, we
can observe that PerfXRL was able to identify performance
bottlenecks at a much higher rate than random testing. At the

end of the experiment, the average number of performance
bottlenecks identified by PerfXRL and random testing are
around 100 800 and 58 405, respectively. Both PerfXRL
and random testing executed the same amount of input value
combinations, but PerfXRL found 72% more bottlenecks than
random testing. We would like to point out that the standard
deviation of the results using random testing was very low;
thus, it is not visible in the figure. In summary, the overall
results show that PerfXRL is better and faster in finding
performance bottlenecks compared to random testing.

V. RELATED WORK

In this section, we discuss the most important related works
on performance testing using machine learning and other
approaches.

Luo et al. [25] present a technique called FOREPOST,
which uses a machine learning algorithm to extract rules that
map performance behaviors of the application under test to
input combinations. The main difference between FOREPOST
and our proposed approach is that FOREPOST uses a rule
learning algorithm to extract some rules to guide the selection
of test inputs, whereas our proposed approach uses reinforce-
ment learning to rigorously explore the input space and learns
to concentrate the search on the most important subsets of the
input space. The rule learning approach of FOREPOST does
not provide a good coverage of the input space and as a result
misses some bottlenecks.

Shen et. al [26] propose an approach called GA-Prof, which
performs search-based profiling of the application under test
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Fig. 3. Cumulative number of performance bottlenecks found during exploration

(AUT). The search is guided by a genetic algorithm. The
source code of the AUT is analyzed to identify mappings of
the test inputs to the methods in the source code and then
to identify the methods involved in performance bottlenecks.
There are two main differences between GA-Prof and our
proposed approach: (1) our proposed approach uses machine
learning instead of a genetic algorithm and most importantly
(2) our proposed approach does not rely on the source code
of the AUT.

Lemieux et al. [8] presented a performance test generation
approach called PerfFuzz. It uses feedback-directed mutational
fuzzing to find inputs that reveal worst-case algorithmic com-
plexity in different components of the program under test. The
process starts with a set of randomly generated inputs. New
inputs are generated iteratively by saving and mutating the
previous inputs that increase code coverage. When compared
to PerfFuzz, our approach does not rely on the source code of
the AUT and uses reinforcement learning to explore the input
space of the AUT.

Chen et al. [27] presented a performance analysis frame-
work called PerfPlotter and a symbolic execution approach
for generating performance distributions for a program under
test. The performance distributions are generated from the
source code and usage profiles of the program. The approach
uses probabilistic symbolic execution to selectively explore
different high-probability and low-probability execution paths
in the program and generates performance distributions. The
generated distributions can be used to understand and an-
alyze the general trend of program execution times along
with the best-case and worst-case execution times. Although
performance distributions of a program under test can be
useful in performance testing, PerfPlotter does not provide a
performance testing approach.

In summary, although a large amount of research work
has been done in investigating the methods for finding the
performance bottlenecks, we could not find any approach
similar to the one presented in this paper, that is identifying a
near-complete set of performance bottlenecks in a black-box

system by exploring only a subset of the input space of the
SUT.

VI. THREATS TO VALIDITY

The first threat to the internal validity of the experiment
is that we randomly injected artificial bottlenecks into the
subject application. Thus, there is a threat that we may achieve
different results by running our approach against a system with
real bottlenecks. However, by following this experimental de-
sign, we managed to evaluate PerfXRL in a controlled setting
effectively. Thus, we believe that we sufficiently minimized
this threat, and our results are reliable.

PerfXRL, like many other machine learning approaches, is
susceptible to their parameters, for instance, a suitable set of
parameter values for one problem environment might not work
well for others. For DDQN, we selected the parameter values
according to the practical experiences reported in previous
researches using deep Q-learning algorithm [11], [14]. Since
our approach does not require access to the source code of the
SUT nor domain knowledge, in a real-world setting, one only
needs to adjust few parameters (e.g., performance threshold
L) for a new environment or SUT.

The main threat to external validity is that we used only one
SUT in our evaluation. Therefore, the results of our experiment
may differ for systems that have different architectures or
different input space. However, to the best of our knowledge,
there are no publicly available performance benchmark appli-
cations which closely represents the real-world applications.
This threat needs to be addressed by performing additional
experiments using different applications. Another threat is the
selection of URLs listed in Table II. The only reason we have
chosen those URLs is that we are focusing on integer input
parameters in this work. Nevertheless, our approach is agnostic
to input parameter types and can be applied to different types
of inputs (e.g., string, float) by updating the action and input
space accordingly.

A final threat to external validity is that we only compared
PerfXRL against random testing in order to evaluate the



efficiency of PerfXRL, which might be seen as an unfair
comparison. As we have discussed in Section V, we could
not find any approach similar to PerfXRL that is to find
performance bottleneck in a black-box system by exploring
only a subset of the input space of the SUT. Moreover, it has
been reported that random testing performs better than many
other systematic approaches, especially when we are testing a
black-box SUT [17]–[19].

VII. CONCLUSION

We presented PerfXRL, a novel approach to find perfor-
mance bottlenecks in a black-box system without any prior
domain knowledge using Reinforcement Learning. In our
approach, a learning agent explores a large space of the input
value combinations and focuses only on those areas of the
input space which are most likely to trigger performance
bottlenecks in the system under test. The results presented
in this paper show that, after executing only 25% of the total
combinations of input values, PerfXRL managed to find ap-
proximately 72% more performance bottlenecks than a random
testing technique. For our future work, we aim to integrate
different key performance indicators (KPIs) such as CPU and
memory usage into our reward function. We are also planning
to try different types of neural network architectures and to
investigate how do they affect the efficiency and effectiveness
of PerfXRL.
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