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Abstract. The state of the art in protein structure prediction (PSP)
is currently achieved by complex deep learning pipelines that require
several input features. In this paper, we demonstrate the relevance of
Geometric Algebra (GA) for modelling protein features in PSP. We do
so by proposing a novel GA metric based on the relative orientations
of amino acid residues. We then employ this metric as an additional
input feature to a Graph Transformer (GT) to aid the prediction of
the 3D coordinates of a protein. Adding this GA-based orientational
information improves the accuracy of the predicted coordinates even after
few learning iterations and on a small dataset.
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1 Introduction

The last Critical Assessment of Protein Structure Prediction (CASP14) was won
by AlphaFold 2, reaching an unprecedented global distance test (GDT) score of
above 90% in almost 70% of the proteins in the CASP dataset [1]-[3]. AlphaFold
2 confirmed that deep learning (DL) is the most successful approach for PSP,
and significantly cheaper and faster than experimental techniques [4]-[6].

A typical DL-based PSP pipeline is generally composed of several cascaded
neural networks, whose end goal is the prediction of 3D coordinates of some of
the atoms in the protein backbone [7]. In recent literature, Transformer networks
have been proven to be particularly suitable for this task [1, 7, 12]. Transformer
networks are sequence-to-sequence models first introduced in [8], and have found
widespread application in fields including speech synthesis [9], semantic corre-
spondence [10] and trajectory forecasting [11].
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In PSP, for example, two of the seven networks employed in [7] are Trans-
former networks to predict and refine the coordinates of the backbone atoms,
respectively. Similarly, a multiple sequence alignment (MSA) Transformer fol-
lowed by a GT has been employed to predict 3D coordinates starting from the
protein’s sequence of amino acids in [12].

The 3D coordinates are predicted by training the network on several biolog-
ical and chemical features of the protein. These features are extracted starting
from its amino acid sequence (or primary structure) [14]. It has been shown
that the interresidue distances (e.g. distance between amino acid pairs), the sec-
ondary structures of the proteins (e.g. the folding patterns such as helices, sheets
or turns), as well as some measure of the orientation between amino acids (e.g.
angle maps) are among the most relevant features when learning accurate 3D
coordinates [7, 13, 14].

GA is a suitable candidate to represent the features mentioned above due
to its intuitive handling of geometrical objects and operations on them [15, 16].
GA has already found some applications in protein modelling, especially in the
molecular distance problem [17, 18], but to the best of our knowledge there has
not been an effort to employ GA modelling for PSP.

The goal of this paper is hence to (1) employ GA to model a protein and
capture information about the orientation of the amino acids and (2) use this
information as a feature in a GT network. The motivations of using GA are that:
(1) GA easily deals with geometrical objects such as planes, which naturally
occur in the protein geometry (2) our GA feature is more compact compared
with torsion and valence angles, which also grasp orientational information, but
are more than one and asymmetrical, as seen in [13] and (3) it has a clear physical
meaning, since it is related to secondary structures (see Section 2.1).

The rest of the paper is structured as follows: in Section 2 protein modelling
through GA and graphs are presented, in Section 3 the learning architecture is
introduced, in Section 4 results are presented and in Section 5 conclusions are
drawn.

2 Modelling Proteins

2.1 Proteins as Rigid Bodies

The atoms in the protein backbone determine its overall shape. Each amino acid
is bonded to an α-carbon (Cα), which is preceded by a nitrogen (N) atom and
followed by a carbon (C) atom. Hence, there is a one-to-one correspondence
between an amino acid i and a triplet {N,Cα, C}i.

Each {N,Cα, C} triplet lies on a plane. We can take advantage of this in-
formation and associate each triplet i with a plane Πi in Conformal Geometric
Algebra (CGA): let Ai, Bi and Ci be the CGA representations of the Euclidean
coordinates of the atoms {N,Cα, C}i. Πi can be then computed as the 4-blade:

Πi = Ai ∧Bi ∧ Ci ∧ n∞ (1)
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where n∞ = e + ē, with e2 = +1, ē = −1 being two basis vector of G4,1,0 and ∧
denoting the outer product.

In this way, a protein is modelled as a collection of planes not too dissimar
to the gas of 3D rigid bodies of AlphaFold 2 [19] (see Fig. 1).

i

Rij

j

Fig. 1. A toy helix protein as a collection of planes. Πj = RijΠiR̃ij

For each pair of planes Πi, Πj we can then form a rotor that rotates Πi into
Πj as presented in [20]:

Rij =
1√
⟨ξ⟩0

(1 −ΠiΠj) (2)

where ξ = 2 − (ΠiΠj + ΠjΠi) and ⟨·⟩ is the grade projector operator.
We now use the cost function Cλ(R) as defined in [21] that quantifies the

variation of R from the identity. Cλ(R) is a weighted sum of a translational and
a rotational term:

Cλ1λ2
(R) = λ1⟨R∥R̃∥⟩0 + λ2⟨(R⊥ − 1)(R̃⊥ − 1)⟩0 (3)

in which the translational error is represented by R∥ = R · e, and the rotational

error by ⟨(R⊥ − 1)(R̃⊥ − 1)⟩0 = ⟨(R − 1)(R̃ − 1)⟩0. As we are interested in
an orientational feature, we will focus exclusively on the rotational part (i.e.
λ1 = 0, λ2 = 1).

Since each amino acid can be associated with a plane, and each pair of planes
can be associated with a rotor and eventually to a cost, we can then build an
N ×N matrix M as follows:

Mij =

{
Cλ1λ2(Rij) if dij < 15 Å

0 otherwise
(4)

where N is the amino acid sequence length and dij is the Euclidean distance
between the Cα of residues i, j measured in Å. We call M a “cost map”. An
example of a cost map is given in Fig. 2.

It is possible to establish a relationship between the secondary structure and
the patterns in the cost maps. By secondary structure we refer to local folding
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Fig. 2. Cost map for protein 2hc5 from the PDB database [24]

patterns of a protein, including α-helices, β-sheets or turns. We illustrate this
relationship by assigning an arbitrary colour to each secondary structure: red to
α-helices, green to β-sheets, blue to turns and white to all the others. In Fig. 3
we see how the same colour patches have almost identical cost map patterns.

To the best of our knowledge, this is the first example of a single orientational
map based on GA that matches the secondary structures.

Fig. 3. Colour coded secondary structures overlapping the cost map of protein 2hc5.

2.2 Proteins as Graphs

It is also possible to represent a protein as a heterogeneous graph G (V,E) with
V and E being its set of nodes and edges, respectively. By heterogeneous graph
we refer to a graph with different types of nodes and edges. If |V | = N is the
total number of nodes, the graph can be described as a set of adjacency matrices
for each of the K edge types, i.e. {Ak}Kk=1, where Ak ∈ RN×N , or in tensor form
A ∈ RN×N×K . Along with A, we can also define a feature matrix X ∈ RN×D,
where D is the dimensionality of the features, or equivalently we can say there
are D node types.

For our experiment, we employed the PDNET dataset and recast it in graph
form [14]. PDNET is composed of a stack of 57 N ×N channels for each of its
proteins. We can hence associate each pairwise feature with an edge type and
each per-amino acid feature with a node type. Of the 57 channels, 3 of them
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correspond to 3 pairwise features (FreeCon, CCMPred and potential). To these
3 we added distance maps (defined as Dij = dij , where dij = ∥Ti − Tj∥2, with
T ∈ RN×3 being the ground truth coordinates of the Cα atoms of the protein)
and cost maps M, to obtain a total of K = 5 pairwise maps of size N ×N , with
N being the protein chain length. They correspond to the edges of the protein
graph, i.e. the adjacency matrices A ∈ RN×N×K=5. The remaining 54 channels
are the matrices and their transposes of the remaining 4 features (SA, PSSM, SS,
entropy), which are associated with a single amino acid. Ignoring the transposed
matrices, we are left with 27 channels, which can be manipulated and arranged
in a feature matrix X ∈ RN×D=27.

The input to the architecture is then given by the pair of tensors {A, X}(i)
for each protein i in the dataset.

3 Architecture

The end-to-end architecture, derived from [12], is composed of two parts: (1) a
GT and (2) 3D projector. A summary of the architecture is shown in Fig. 4.
We omitted the MSA Transformer of [12] as the employed dataset allows us to
directly perform node and edge embedding on its features.

Fig. 4. The employed architecture

3.1 Graph Transformer

The GT has been implemented as described in [22]. The goal of a GT is to learn
informative meta-path within the graph, i.e. an ordered sequence of node types
and edge types. The output of the l-th layer of a GT with C attention heads is
a node representation with same dimensionality as X, i.e. Z ∈ RN×D which can



6 A. Pepe et al.

be written as

Z(l) =

C⊕
i=1

σ(∆̃−1
i Ã

(l)
i XW ) (5)

where
⊕

is the concatenation operator, σ(·) is the sigmoid function, ∆̃i is the

degree matrix of Ã
(l)
i (defined as ∆mm =

∑
n Amn), X is the feature matrix,

W ∈ RD×D is a trainable weight matrix and Ã
(l)
i = A

(l)
i + I, in which A

(l)
i

is the adjacency matrix from the i-th channel of the metapath tensor A(l) ∈
RN×N×C . A(l) is evaluated as A(l) = ∆−1Q1Q2. Q1 and Q2, both ∈ RN×N×C ,
are two adjacency tensors selected according to Q = φ[A; ζ(Wφ)], where A ∈
RN×N×K is the adjacency tensor, φ(·) is the convolution operator, ζ(·) is the
softmax function and Wφ ∈ RC×C×K are the weights of φ. Z contains the node
representations from C different meta-path graphs.

3.2 3D Projector

The 3D projector is a simple fully connected layer obeying P = Z(L)WP , where
Z(L) is the output of the L-th layer of the GT, WP ∈ RD×3 is the weight matrix
of the projector and P ∈ RN×3 are the 3D coordinates of the N Cα atoms in
the protein chain.

To train the model, a distance map is evaluated for each protein from the
predicted coordinates P as D̃ij = dij , where dij = ∥Pi − Pj∥2 is the Euclidean
distance between the 3D coordinates of the i-th and j-th amino acid in P .

The total loss to minimize is equal to L = L1+L2. The first term minimizes
the L1 loss between D (the ground truth distance map) and D̃, as L1 =
1

N2

∑N
i

∑N
j ∥D̃ij − Dij∥1. The second term maximizes the structural simi-

larity index (SSIM) between D and D̃ weighted by an arbitrary coefficient
α = 10 to make L2 of the same order of magnitude of L1, namely L2 =

α
(

1 − SSIM{D, D̃}
)

. The loss is measured over distance maps and not over

3D coordinates as 3D coordinates depend on a reference frame, while distances
are rotationally and translationally invariant.

3.3 Training Details

We trained the model consisting of the GT and 3D projector on the PDNET
dataset. The model consists of 108813 trainable parameters, of which 108648 of
the GT and 165 of the projector. The train and validation sets are subsets of
PDNET composed of 200 proteins each, while the test set contains 150 proteins.
The optimizer has been set to Adam with exponentially decaying learning rate,
with initial learning rate η0 = 1 × 10−2 and decay rate per epoch γ = 0.9. The
GT has C = 4 attention heads and L = 3 layers. The batch size has been fixed
to B = 1 and the network has been trained for E = 5 epochs, for a total of 1000
training iterations.
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Combinations of η ∈ {1× 10−1, 1× 10−2, 1× 10−3, 3× 10−4}, E ∈ {3, 5, 10},
B ∈ {1, 50, 100}, L ∈ {3, 6, 10}, C ∈ {1, 4, 5} have also been implemented and
tested, but the hyperparameters above were found to be optimal for our problem.

The code has been written as a Jupyter Notebook on Google Colaboratory,
run on an NVIDIA Tesla K80 GPU and it uses PyTorch for the DL architecture,
the Clifford library for GA operations [23] and the PDB Module of Biopython
for handling protein data. The GT was derived from [12]. Scripts and datasets
are available upon request to the authors.

4 Results

We trained the architecture and collected results for two cases: (1) with cost
maps (D = 27,K = 5) and (2) without cost maps (D = 27,K = 4), to verify
whether adding a single additional GA-based adjacency matrix Ak in our graph
could provide an improvement.

From the predicted coordinates P ∈ RN×3 we constructed distance maps
D̃ ∈ RN×N , and we then measured the mean absolute error (MAE) and SSIM
between D and D̃. The MAE and SSIM distributions are presented in Table 1,
while the distributions and percentiles over the test set are visualized in Figs.
5-6 for the MAE and the SSIM, respectively.

Table 1. Metric between original and predicted distance maps. Results without costs
are in parenthesis.

Set Metric Max Mean Min Std

Train SSIM 0.98 (0.90) 0.88 (0.43) 0.12 (-0.10) 0.10 (0.22)
Test SSIM 0.99 (0.86) 0.88 (0.43) 0.38 (-0.14) 0.10 (0.25)

Train MAE (Å) 27.9 (23.3) 6.09 (7.38) 2.16 (3.32) 2.69 (3.05)
Test MAE (Å) 10.3 (12.8) 5.99 (7.02) 2.49 (3.58) 2.35 (1.91)

Note in Table 1 how the average SSIM doubles from 0.43 when coordinates
are predicted without cost maps to 0.88 when coordinates are predicted with
cost maps. Similarly, the average MAE decreases by 1.29 Å and 1.03 Å on the
train and test sets, respectively, when we include cost maps. From Fig. 5 it can
be seen that the median MAE of the test set is found to be at about 5 Å with
costs maps and at about 7 Å without cost. The improvement introduced with
cost maps is even more evident in Fig. 6, in which the median SSIM of the test
set is > 0.4 without cost maps and > 0.8 with cost maps.

We then aligned P and T via singular value decomposition (SVD) (see Ap-
pendix A) and performed the GDT, and evaluated the GDT TS (total score)
and GDT HA (half size) between predicted coordinates P and ground truth
coordinates T , obtained from the Protein Data Bank (PDB) [24].

GDT TS =
p<1Å + p<2Å + p<4Å + p<8Å

4
(6)
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Fig. 5. MAE measured over the testing set. Distribution (left) and cumulative proba-
bility (right).

Fig. 6. SSIM measured over the testing set. Distribution (left) and cumulative proba-
bility (right).

GDT HA =
p<0.5Å + p<1Å + p<2Å + p<4Å

4
(7)

where p<nÅ indicates the percentage of an amino acid’s coordinates in P whose
distance from the corresponding amino acid’s coordinates in T is below n Å.

Results for selected proteins are shown in Table 2. Note how both the GDT TS
and the GDT HA generally increase by at least a factor of 2 when adding cost
maps as an additional feature. Examples of the predicted coordinates and rela-
tive distance maps are given in Figs. 7-10.

5 Conclusions

In this paper we introduced a measure of the orientation between amino acids
based on GA. We presented the ideas behind the modelling of a protein as a
collection of planes, we introduced a measure of the “distance” between each
pair of planes and arranged it in matrix form, i.e. a cost map.

We then employed these matrices as an additional feature in a GT + 3D
projector pipeline to predict 3D coordinates of Cα atoms in proteins. We did
so by adapting in graph form a dataset comprising several biochemical features
already available in the literature, to which we added cost maps. Eventually, we
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Fig. 7. Top row, from left to right: original, predicted and predicted (without cost
maps) distogram for protein 2gomA. Bottom row: original (red) and predicted (blue)
Cα coordinates. Left: with costs, right: without costs

Fig. 8. Top row, from left to right: original, predicted and predicted (without cost
maps) distogram for protein 1dm9A. Bottom row: original (red) and predicted (blue)
Cα coordinates. Left: with costs, right: without costs



10 A. Pepe et al.

Fig. 9. Top row, from left to right: original, predicted and predicted (without cost
maps) distogram for protein 2fztA. Bottom row: original (red) and predicted (blue) Cα
coordinates. Left: with costs, right: without costs

Fig. 10. Top row, from left to right: original, predicted and predicted (without cost
maps) distogram for protein 2fyuK. Bottom row: original (red) and predicted (blue)
Cα coordinates. Left: with costs, right: without costs
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Table 2. Metrics between original and predicted coordinates with and without (-) cost
maps after SVD alignment. MAE and SSIM are measured on distance maps.

Protein MAE SSIM GDT TS GDT HA

2gomA 2.49 0.86 31.2 9.84
2gomA (-) 5.31 0.53 13.9 4.10

1zv1A 2.83 0.96 28.8 10.2
1zv1A (-) 4.78 0.46 14.0 3.39

1dm9A 3.58 0.95 25.5 7.93
1dm9A (-) 6.94 0.36 6.25 0.48

1m8nA 3.59 0.92 22.0 7.92
1m8nA (-) 5.04 0.49 11.0 2.08

2fztA 3.65 0.96 18.6 4.49
2fztA (-) 6.81 0.55 8.96 1.60

2fyuK 3.44 0.98 15.1 3.30
2fyuK (-) 6.69 0.82 4.72 1.41

compared the 3D coordinates predicted including cost maps with coordinates
predicted without them.

We showed that our GA-based cost maps aids the convergence of the model
and the prediction of more accurate coordinates in terms of GDT TS and GDT HA
scores with respect to ground truth. In addition, the distance maps constructed
from the coordinates predicted including costs are closer to the original distance
maps in terms of both MAE and SSIM.

Despite training the model on a dataset of only 200 short proteins and for few
iterations, we managed to obtain reasonable protein structures. We are confident
that including cost maps on a larger scale problem (e.g. larger training set, more
learning iterations, higher dimensionality of node and edge embeddings, etc.)
can constitute an asset in PSP by increasing prediction accuracy with a minimal
amount of additional information.
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