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Abstract Glaucoma is one of the leading causes of ir-

reversible blindness worldwide. Numerous studies have

shown that a larger vertical Cup-to-Disc Ratio (CDR)

is closely associated with the glaucoma diagnosis. CDR

is highly useful in the clinical practice and evaluation

of glaucoma. However, the determination of CDR varies

among clinicians and is highly dependent on the doc-

tor’s subjectivity. Existing methods only segment the

cup and disc features without considering the nearby

vascular information. Based on guidance and criteria

from experienced clinicians in diagnosing glaucoma, we

incorporate segmented essential vascular information to

constrain CDR segmentation. We add key vessel infor-

mation to the network as the prior knowledge to better

guide the model to distinguish the boundary of the op-

tic cup. The effectiveness of incorporating essential vas-

cular information has been demonstrated through ex-

periments conducted on the public dataset REFUGE as

well as the home-made dataset. The home-made dataset

consists of high-quality CDR images and remade CDR

images, corresponding to the diagnosis scenario and the

screening scenario in which the patient needs to upload

the fundus image by taking photos. The model is de-
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Fig. 1 Top image illustrates the difference in visual fields
between non-glaucoma and glaucoma patients [1]. Glaucoma
patients often experience blurry vision and visual field loss.
The images below are from the REFUGE dataset, with the
left showing a non-glaucomatous retinal image and the right
showing a glaucomatous retinal image.

ployed on the Wechat mini-program for practical glau-

coma diagnostic and screening applications.

Keywords Cup-disk ratio segmentation · Retinal
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1 Introduction

Glaucoma is currently the leading cause of irreversible

blindness worldwide [2], and it is one of the major causes

of irreversible vision loss in the world. It has a high

prevalence and blindness rate. According to estimates

by the World Health Organization, the number of glau-

coma patients worldwide exceeded 88 million in 2020
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[3]. The progression of glaucoma is initially asymptomatic

and gradually leads to vision loss, which can only be

observed in the late stage. Once diagnosed, it results

in permanent visual impairment. Early detection and

timely treatment of glaucoma can further control dis-

ease progression, making it an important means of pre-

venting glaucoma [4][5]. It is usually caused by elevated

intraocular pressure (IOP), which leads to mechanical

strain and torsion of the optic nerve, as well as loss of

retinal nerve fibers. Glaucoma alters the morphology

of the optic nerve head (ONH), typically manifesting

as a larger CDR, pale optic disc, disc hemorrhage, etc.

Digital fundus imaging is an important medical tool

that assists doctors in diagnosing and analyzing glau-

coma [6][7]. Fundus images include various features of

the fundus area, such as the optic disc, cup, arterioles,

and venules. As shown in Figure 1, the visual field of a

normal individual and that observed by glaucoma pa-

tients differ [8].

In digital fundus images, the optic disc (OD) ap-

pears as a pale yellow region, and within the OD, there

is a relatively bright elliptical or circular area called the

optic cup (OC). The CDR, which represents the ratio of

the size of the central depression to the size of the OD,

is an important auxiliary parameter for glaucoma diag-

nosis. Clinicians identify the specific boundaries of the

OD and OC and calculate the corresponding ratio to

assist in determining whether it is glaucoma. Although

both the OC and disc exist in normal individuals, the

area or diameter ratio of the OD and OC in glaucoma

patients’ fundus images is higher than that of normal

individuals. Due to elevated IOP, the size of the OC is

larger than that of normal individuals. Therefore, when

the vertical CDR ratio exceeds 0.65 [9], the patient is

classified as having glaucoma according to clinical stan-

dards.

Since doctors need to manually segment the OD and

OC regions in fundus images and estimate the approx-

imate CDR value for classification, this glaucoma diag-

nosis method requires a considerable amount of manual

effort, is time-consuming, and inefficient. Moreover, it

depends to some extent on the expertise of ophthalmol-

ogists, and the information extracted manually from

fundus images is limited. Therefore, computer-assisted

medical diagnosis is of paramount importance.

In recent years, there have been numerous efforts

to utilize computer-aided medical diagnosis, broadly

categorized into traditional methods and deep learn-

ing methods. Traditional methods include approaches

based on color, contrast thresholds, and morphological

operations on the OD. These traditional methods are

sensitive to image quality and pathological variations,

resulting in low accuracy. Studies have employed edge

Fig. 2 Fundus images of non-glaucoma and glaucoma. (a)
depicts a glaucomatous retinal image where VC, primarily
concentrated at the OD and OC boundaries, is caused by
glaucoma. In non-glaucoma fundus images as (b), the blood
vessels at the boundary are not curved.

detection methods to segment the OD and OC, assum-

ing clear boundaries between them. Nevertheless, in cer-

tain cases, the boundaries may be indistinct, leading to

inaccurate segmentation. Machine learning algorithms

have also been applied to the OD and OC segmenta-

tion, relying on manual feature extraction and lacking

the ability to automatically learn complex features.

Significant progress has been made in OD and OC

segmentation using deep learning methods [10][11][12].

These approaches employ convolutional neural networks

(CNNs) [13][14] to learn complex features from input

images. Studies use CNNs with encoder-decoder struc-

tures, such as U-Net [15] and Mask R-CNN [16], for OD

and OC segmentation. These methods have achieved

high accuracy, but they still face challenges in accu-

rately segmenting the boundaries between the OD and

OC. This is because blood vessels near the fundus can

influence the OD and OC segmentation, causing the

models to struggle with precise boundary delineation.

Existing methods for CDR segmentation do not con-

sider the information from blood vessels in the segmen-

tation of the OD and OC. Based on the clinical expe-

rience of expert ophthalmologists, in the segmentation

of CDR for glaucoma, doctors pay attention to the cur-

vature of blood vessels within the OC to determine the

boundary of the OC. As shown in the Figure 2, there

is a curvature in the blood vessels of glaucoma, and
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doctors use the location of vessel curvature to assist in

determining the boundary of the OC.

Motivated by this observation, we incorporate the

information of retinal blood vessels into the network

for learning. By learning the prior information about

blood vessels through the network, we aim to assist

in the segmentation of the OD and OC. We introduce

the concept of Vascular Curvature (VC), as VC can af-

fect the boundaries of the OD and OC. If the model

can utilize this vessel information to assist in the OD

and OC segmentation, similar to how clinicians do, the

performance of CDR segmentation can be improved.

Therefore, we define how blood vessels in retinal im-

ages impact the OD and OC segmentation, as well as

the VC degree. We incorporate the VC information into

the model to enable it to learn the vessel information

that affects the boundaries of the disc, thereby assisting

in the OD and OC segmentation.

2 Related Work

Lalonde et al. initially proposed a template matching-

based approach to obtain the boundary of the OD [17].

Since the shape of the OD and OC [18] is generally ellip-

tical or circular, the method segments the OD and OC

by extracting the edges of the retinal image and match-

ing them with a template [19][20][21]. Due to the heavy

reliance on template matching, the method suffers from

poor performance when the shape of the boundary is af-

fected by the surrounding blood vessels. Mendels et al.

employed a contour model to detect the boundary of the

OD based on image gradients [22][23][24]. To suppress

the influence of blood vessels on the boundary, an active

contour model based on Gradient Vector Flow (GVF)

was used for disc boundary detection, followed by min-

imizing the high gradients caused by vessel locations to

reduce the impact [25][26]. Lowell et al. employed cir-

cular transform techniques to obtain the boundary of

the OD [27][28]. The segmentation of the OC, which is

located within the disc and has low contrast, poses a

greater challenge. Li et al. proposed a variational level

set-based algorithm for OD segmentation, utilizing el-

lipse fitting operations for smoothing to obtain the seg-

mentation result of the disc [29]. Li et al. represented

features for OC segmentation based on visual charac-

teristics such as color histograms [30]. Relying on manu-

ally extracted features, the method heavily depends on

image quality and the position of pathological regions,

resulting in poor robustness. Wong et al. first discovered

the usefulness of vessel tortuosity for OC segmentation

[20], but did not consider the influence of natural vessel

curvature around the OC. There are also some meth-

ods [31][32][33] combining vascular information that do

not solve the OD and OC segmentation problem. Sev-

astopolsky et al. proposed a modified U-Net for OD

and OC segmentation [34], but did not perform joint

OD and OC segmentation, instead separating them in

a sequential manner. Zilly et al. proposed an integrated

learning method based on CNN for OC and OD extrac-

tion [35].

3 Methods

3.1 Background

Our goal is to address the CDR measurement in real

glaucoma diagnosis and screening scenarios. Directly

applying models trained on public datasets to real-world

applications results in poorer performance due to the

inherent blurriness of images in screening scenarios com-

pared to the original fundus images. To better align

with real-world application scenarios, we not only re-

quire the original fundus images as data for glaucoma

diagnosis, but also incorporate user-uploaded fundus

images taken manually during the screening process

into the training set. We collect 400 images captured

by users from different angles using mobile phones dur-

ing the glaucoma screening phase, which are included

as part of the training set. Additionally, we performed

joint training using the REFUGE dataset, which rep-

resents the diagnostic scenario.

3.2 Data preprocessing

For semantic segmentation using deep learning meth-

ods, data plays a crucial role. Previous studies have

utilized retinal datasets such as REFUGE [21], ORIGA

[36], Drishti [37], and others. These datasets consist of

images captured using professional equipment and an-

notated by experts, ensuring high data quality and re-

lieving the pressure on neural networks to learn from

them. To address the issues of model overfitting and

poor generalization caused by limited data, researchers

employ various data augmentation techniques to en-

hance model performance. In real-world scenarios, ac-

quiring high-quality datasets is challenging, making data

preprocessing even more important.

The ultimate goal is to apply this model to real clin-

ical diagnostics and screenings. Existing methods per-

form well on publicly available datasets such as REFUGE,

but they often struggle with generalization in real-world

diagnostic and screening scenarios. Various factors and

conditions can impact the performance of existing algo-

rithms in practical applications. To enhance the model’s
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Fig. 3 Overall framework for CDR segmentation. In this diagram, we describe the entire process of the model. We first
pre-train the model using vascular data, then transfer learning on OC and OD data, and expand the classification head for
new tasks.

generalization, we include images collected during ac-

tual diagnostic processes as part of the dataset and per-

form joint training with the REFUGE dataset. This

approach better aligns with the requirements and sce-

narios encountered in real-world applications.

In this work, we employ object detection algorithms

to locate the OD region in retinal images and crop fixed-

size regions to reduce interference from complex back-

grounds and noise. Since we emphasize the learning of

vascular information and useful VC information is pri-

marily present within the OD region, cropping the re-

gion of interest may aid in learning vessel information

and the OD and OC segmentation. Additionally, some

retinal datasets provide only annotations for the OD

and OC without corresponding vessel information. To

strengthen the influence of vessels, two approaches can

be adopted: explicit intervention and implicit interven-

tion.

In this task, explicit intervention refers to directly

utilizing the position information of VC as the criterion

for OC segmentation. For example, we employ feature

point detection or curvature calculation to obtain VC

information and use it as the boundary for the OC. Such

an approach overlooks the impact of other important

information in retinal images on OC segmentation. In

complex vessel scenarios, this judgment method poses a

significant challenge to the model robustness. The im-

pressive performance demonstrated by neural networks

leads us to believe that they are capable of learning hi-

erarchical feature information from retinal images and

considering it comprehensively. Therefore, we adopt an

implicit intervention approach, providing label informa-

tion for vessels that influence the boundary of the OC

in retinal images, thereby enhancing the network’s abil-

ity to discriminate vessels and making VC information

one of the key factors improving the final segmentation

results.
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Table 1 Experimental results. We conduct joint training on the REFUGE dataset and the GSD dataset separately using
the U-Net [15], TransU-Net [38], Segtran [39] architecture. This process yields models that are subsequently utilized to make
predictions on both the REFUGE dataset and the GSD dataset. V C represents only critical vascular information.

REFUGE GSD

Dice (OD) Dice (OC) Average dice Dice (OD) Dice (OC) Average dice

U-Net [15] 0.873 0.805 0.839 0.490 0.715 0.603

U-Net with VC 0.927 0.819 0.873 0.872 0.813 0.843

TransU-Net [38] 0.958 0.900 0.929 0.899 0.801 0.850

TransU-Net with VC 0.956 0.901 0.929 0.913 0.819 0.859

Segtran [39] 0.870 0.835 0.853 0.917 0.849 0.883

Segtran with VC 0.895 0.841 0.868 0.942 0.845 0.894

Fig. 4 Typical examples in GSD dataset. (a) represents the
original retinal image, (b) displays the retinal image with
added noise, (c) shows screen-captured images, and (d) ex-
hibits retinal images uploaded by portable devices such as
mobile phones or tablets.

3.3 Blood vessel feature extraction and information

fusion

After implicitly introducing VC information, we divide

the entire training process into two parts. In the first

step, the network learns vessel information from retinal

images. Convolutional neural network based methods

have achieved remarkable results for vessel segmenta-

tion. The label information provides for retinal images

contains only a portion of vessels that may affect the

OC boundary, which may lead to fragmented vessel

states and higher requirements for positional informa-

tion. While CNN demonstrates powerful feature extrac-

tion capabilities and can handle most vessel segmenta-

tion tasks, it falls short compared to Transformers in

capturing contextual information and extracting global

information. To enable the network to better learn cru-

cial vessel information, we adopt a network that com-

bines CNN and Transformers, as shown in Figure 3.

The original image undergoes CNN to obtain feature

distribution data, which is then combined with posi-

tional information and fed into the Transformer. This

combination leverages the strengths of both CNN and

Transformers to enhance the acquisition of specific ves-

sel information. Notably, the incorporation of vascular

information fundamentally serves as prior knowledge

for model learning. The selection of different network

architectures leads to variations in the final results,

which can be categorized as horizontal comparisons.

The vertical enhancement brings by vascular informa-

tion proves effective for CNNs as well, providing a novel

perspective primarily aims at improving the OD and

OC segmentation performance.

After fully learning vessel information from retinal

images, a key challenge is how to incorporate it into

the OD and OC segmentation task. As mentioned ear-

lier, the implicit intervention approach embeds vessel

information in the model, allowing us to utilize this

knowledge as prior information for guiding the model

in learning OD and OC segmentation. Previous work

has demonstrated the effectiveness of transfer learning

using pre-trained models. The challenges we face are

similar yet distinct. Transfer learning primarily involves

pre-training on large-scale datasets to obtain powerful
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Fig. 5 Comparison of model performance. Input consists of fundus photos from four different scenes; GT refers to the pre-
annotated ground truth; The rest is the result of Segtran [36] prediction visualization under different dataset and different
conditions. R represents the model trained on REFUGE dataset, J represents the model jointly trained on REFUGE and GSD
dataset, and V represents the model obtained by adding key blood vessel information and jointly trained.

feature extraction models and achieve excellent perfor-

mance on downstream tasks. In contrast, the data we

train on the pre-training and fine-tuning stages lack

such features, and thus, factors improving the final per-

formance mainly stem from the prior knowledge pro-

vided by vessels. We use the vessel information learn-

ing model as a pre-trained model and fine-tune it on

the new OD and OC segmentation task. Given the sig-

nificant differences between the two tasks, to preserve

the guiding function of vessel information, we need to

consider retaining information from the old task while

adjusting to the new task. We transfer the feature ex-

traction component from the existing vascular model to

a new model, while incorporating a novel classification

head for the new model. Moreover, we adopt a lower

learning rate to ensure a smooth transition from old

knowledge to new knowledge.

4 Experiment

4.1 Dataset

GSD: GSD dataset is collected for Glaucoma Screening

and Diagnosis. We collect a dataset consisting of im-

ages specifically acquired for glaucoma screening and

diagnosis. The real screening scenario comprises 400

images captured during actual clinical procedures. Im-

ages taken toward a screen may exhibit variations in

clarity and angles due to differences in shooting an-

gles and imaging devices. The dataset collects under

various conditions aligns with real-world scenarios en-

countered in clinical practice. In addition to the data

presented above, we have collected some additional pro-

cessed data. Among them, 400 images are captured

from the screen with reference to the REFUGE dataset,

and 200 images are artificially augmented with noise on

the REFUGE dataset, including Gaussian noise, con-

trast adjustment, brightness conversion and other op-

erations. Some typical examples of the GSD dataset are

shown in Figure 4.

REFUGE: It consists of a dataset of 400 images for

OD and OC segmentation, including 40 images of glau-

comatous fundus and 360 images of non-glaucomatous

fundus with different sizes and resolutions.

4.2 Experimental setting

To assess the impact of data quantity in different sce-

narios on the model, we add 200 noisy images created by

introducing noise to the original images in the dataset.
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Table 2 Ablation study results. To verify the validity of
blood vessel information on the model, we add all blood ves-
sel information and only key blood vessel information into the
model for training, and make predictions on REFUGE and
GSD datasets. V represents all vascular information, and V C
represents only critical vascular information. The result is the
average Dice of all data.

Methods Dice (OD) Dice (OC) Average dice

U-Net [15] 0.682 0.760 0.721

U-Net with all V 0.490 0.715 0.603

U-Net with VC 0.900 0.816 0.858

Segtran [39] 0.848 0.834 0.841

Segtran with all V 0.820 0.811 0.816

Segtran with VC 0.936 0.846 0.891

Using an initial model as the pre-training model, we

select 75% of the retinal fundus photographs from each

respective scenario as the training set and performed

joint training on retinal fundus photographs from dif-

ferent scenarios, resulting in the current model. To en-

hance user experience, we incorporate functionalities

for retinal photograph localization and automatic clas-

sification of left and right eyes. The experimental results

are shown in Figure 5.

To evaluate the performance of the model, we use

the remaining 25% of the dataset as the test set, in-

cluding 100 original images from REFUGE dataset, 50

images with added noise, 100 images captured from

screens, and 100 actual diagnostic images. We conduct

separate tests on the initial model trained on REFUGE

dataset and the existing model trained on retinal fundus

photographs from multiple scenarios. The test results

are presented in Table 1, and a subset of actual segmen-

tation results is shown in Figure 5. The dice coefficient

serves as an evaluation metric for image segmentation.

4.3 Ablation study

We evaluate the usefulness of the newly introduced VC

information for CDR segmentation, we utilize the Py-

Torch framework with identical hyperparameters. We

employ SegTran as the baseline model and compared

its performance with the addition of key vessel infor-

mation. Furthermore, to demonstrate the efficacy of

glaucoma-induced VC, we incorporate all vessel infor-

mation learned by the model. The ablation results, de-

picted in Table 2, indicate that only the glaucoma-

Fig. 6 Interface of our designed WeChat mini-program.
Users can choose to upload images from their photo album or
capture images using portable devices such as mobile phones
or tablets. The lower section displays the segmentation of
the OD and OC, as well as the calculation of the CDR after
evaluation by the intelligent model. In response to practical
requirements from patients, the user interface of our system
is designed in Chinese. For the sake of convenience in presen-
tation, we have chosen to display the interface in English.

induced VC information is beneficial for CDR segmen-

tation.

4.4 Intelligent diagnostic system

We develop aWeChat mini-program to deploy the model,

allowing users to upload their original retinal fundus
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images or directly capture images of their own cases us-

ing the built-in camera. The system diagram is shown

in Figure 6. Upon completion of the upload, the intelli-

gent model deployed in the backend automatically per-

forms CDR segmentation and visualizes the results on

the user interface, along with the automatic calculation

of the CDR. To enhance user experience, we introduce

functionalities for retinal photograph localization and

automatic classification of left and right eyes. Retinal

photograph localization is implemented to accommo-

date various scenarios. Users may upload retinal fundus

images captured under different conditions, which may

not be the original images. In such cases, we localize the

retinal photographs to the most suitable central regions

within the images. Since the positions of the left and

right retinal fundus images differ, we facilitate identi-

fication by automatically classifying the user-uploaded

retinal fundus images and visualizing them as left or

right eye images. The user interface of the system is il-

lustrated in Figure 6. The system is used for the screen-

ing and diagnosis of glaucoma.

5 Conclusion

In this paper, we incorporate glaucoma-affected VC

information into CDR segmentation based on recom-

mendations from clinically experienced doctors. We cre-

ate the GSD dataset and achieve promising results on

both the REFUGE dataset and the GSD dataset. This

demonstrates that the curved vessel information sur-

rounding the OD and OC can assist in the segmenta-

tion process. By focusing solely on key vessel informa-
tion, the model reduces the influence of other retinal

vessels. Additionally, we design and deploy an intelli-

gent glaucoma diagnosis system. In the future, we will

continue to collaborate with hospitals and patients to

collect diverse datasets, encompassing various scenar-

ios and more data, to enhance the model’s generaliza-

tion and robustness. We will also optimize and improve

the intelligent glaucoma diagnosis system based on user

feedback.
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