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Abstract—Sparse optimization involving the `0-norm function
in objective function has a wide application in machine learning
problems. In this paper, we propose a projected neural network
modeled by a differential equation to solve a class of these
optimization problems, in which the objective function is the
sum of a nonsmooth convex loss function and the regularization
defined by the `0-norm function. This optimization problem
is not only nonconvex, but also discontinuous. To simplify
the structure of the proposed network and let it own better
convergence properties, we use the smoothing method, where the
new constructed smoothing function for the regularization term
plays a key role. We prove that the solution to the proposed
network is globally existent and unique, and any accumulation
point of it is a critical point of the continuous relaxation model.
Except for a special case, which can be easily justified, any critical
point is a local minimizer of the considered sparse optimization
problem. It is an interesting thing that all critical points own
a promising lower bound property, which is satisfied by all
global minimizers of the considered problem, but is not by all
local minimizers. Finally, we use some numerical experiments to
illustrate the efficiency and good performance of the proposed
method for solving this class of sparse optimization problems,
which include the most widely used models in feature selection
of classification learning.

Index Terms—machine learning, projected neural network,
sparse optimization, convergence analysis, critical point.

I. INTRODUCTION

Sparse optimization, which aims to find a solution with most
elements of zero and satisfying a system as much as possible,
has many applications in various applications, in particular
the machine learning, feature selection, image proceeding
and finance [1]–[7]. Formally, a class of sparse optimization
problems take the form of

min f(x) := l(x) + λ‖x‖0
s.t. x ∈ X ,

(1)

where λ is a given positive parameter, ‖x‖0 is the `0 norm
function defined by the number of nonzero elements of x,
l : Rn → R is the loss function to characterize the data fitting
for the system. In this paper, we assume that l is a continuous
convex function and X is a closed convex set of Rn defined
by X = {x : b ≤ x ≤ u} with b, u ∈ Rn and b ≤ 0 ≤ u.

This work was funded by the NSF foundation (11871178,61773136) of
China.

The aim of problem (1) is to find a sparse solution in X
which minimizes function l as much as possible. Here, we
call a vector sparse, if most of its elements are 0. λ is the
parameter to control the tradeoff between the requirement on
minimizing l and sparsity. Note that the objective function
in (1) is discontinuous. Though the `0 function is the most
desirable function to describe the sparsity, finding a global
minimizer of problems with cardinality function is strongly
NP-hard in general [8].

Due to the discontinuity of ‖x‖0, continuous relaxation
is an important method to handle this kind of optimization
problems. In the machine learning community, the `1 function
is one of the most popular one, which is also known as
Lasso. Since `1 is a convex function, there are rich algorithms
for solving the `1 regularized optimization problems. The
equivalence of the `2− `0 and `2− `1 problem in the sense of
global minimizers was first established in [9], [10] and then
was improved from many aspects. However, the `1 relaxation
often leads to a biased estimator [11]. Then, some continuous
but nonconvex relaxation functions were proposed for the `0
function, such as the hard thresholding penalty [12], log-sum
penalty [13], bridge `p (0 < p < 1) penalty [14], [15],
SCAD [11], capped-`1 penalty [16], [17], MCP [18], etc.
Almost at the same time, different algorithms were developed
for solving these nonconvex relaxation problems [19]–[22].
The solutions based on these nonconvex relaxations often
bring better estimators, which not only have good sparsity but
also reduce the deviation on the nonzero elements. However,
the literatures on the equivalence between these nonconvex
relaxation models and the considered `0 regularized problem
are very few. The authors in [23] gave a CEL0 relaxation
model and established its equivalence to the unconstrained
`2− `0 problem. In [17], the authors proved that optimization
problem (1) is equivalent to a Lipschitz continuous problem
with capped-`1 regularization in the sense of global minimiz-
ers. In this paper, we will propose a neural network method to
solve (1) based on the capped-`1 regularized problem, which
is an exact continuous nonconvex relaxation model of (1) [17].
Developing new models and methods for sparse optimization
problems is always an interesting topic for researchers in
optimization and machine learning.

Artificial neural network as a real-time method has a



promising application in optimization. Tank and Hopfield
brought forward a neural network to solve a linear program-
ming [24]. This work is an pioneering work on solving opti-
mization by neural network method. From then on, abundant
neural network models emerged, such as the network in [25]
for nonlinear programming, [26], [27] for nonsmooth convex
problems, [28]–[30] for nonsmooth nonconvex problems, [31],
[32] for non-Lipschitz problems. Comparing with the iterative
methods, the dynamic method on neural network has many
advantages. First of all, we do not need to carry about
the step size for convergence. Next, neural network can be
implemented physically based on circuits, and then it can be
run fast at the order of magnitude [26], [33]. Inspired by these
reasons, we focus on solving (1) by neural network method.

Most neural network models for solving optimization prob-
lems need the regularity on the functions, which is a key
condition in convergence analysis. However, we note that `0
function is discontinuous and the continuous relaxation given
in [17] is not regular, which is one of the main difficulties in
solving (1) by neural networks. To overcome it, we introduce
the smoothing method in this paper. Smoothing methods for
solving nonsmooth optimization problems have been used
for many decades [34]. The main advantage of smoothing
methods is that we can solve the considered nonsmooth
optimization problem by a sequence of optimization problems
with continuously differentiable objective functions. Another
advantage of smoothing method in neural network research
for optimization is that we can use the gradient of the smooth
function instead of the subgradient of the original nonsmooth
function, which promotes the network to be modeled by a
differential equation, but no longer a differential inclusion.

Based on the above review and analysis, the main contribu-
tions of this paper are as follows. First, we consider a widely
used sparse optimization problem and propose a method based
on popular neural network model for solving it. To the best
of our knowledge, to solve the cardinality regularized sparse
optimization problem by neural network was only considered
in [35]. However, the model considered in [35] is a special
case of (1). On the one hand, loss function l in [35] is
smooth, while it can be nonsmooth in this paper. On the
other hand, the constraint in [35] is a box in Rn+, while it can
be any box in Rn in this paper. Though the authors in [35]
shew an extension to the box constraint in Rn, the dimension
of proposed network will increase to 2n. And we would
like to emphasize that the dimension of proposed network
in this paper is just n, which is the same as the dimension
of variable in (1). Second, we construct a new smoothing
function for the capped-`1 function, which is totally different
from the before ones and owns the necessary properties for the
following convergence analysis. Third, thanks to the projection
operator and the constructed smoothing function, we propose a
projected neural network modeled by a differential equation to
solve (1). We prove that any accumulation point of the solution
to the proposed network is a critical point of the considered
continuous relaxation of problem (1). Moreover, it is a good
news that any accumulation point of the solution to the

proposed network satisfies a promising lower bound property,
which is a necessary condition to the global minimizers of
(1), but not to the local minimizers. Though the direct target
of the proposed network is to solve its continuous relaxation,
we can easily justify whether a critical point of the continuous
relaxation problem is a local minimizer of (1) or not.

The remaining parts of this paper are organized as follows.
In section II, we introduce some necessary basic results
used in this paper. A smoothing function for the capped-`1
function is constructed in the first part of section III. Then,
the proposed neural network model is presented in section
III. The convergence analysis and the optimal properties of
the network to problem (1) are given in section IV. Some
numerical experiments are illustrated in section V to show the
effectiveness and good performance of the proposed neural
network for solving sparse optimization problem (1). Section
VI gives a brief summary of this paper. Section VII is the
appendix part, which is used to show all proofs of the results
in section IV.

Notation: Denote Rn the n-dimensional real-valued vector
space, Rn = [−∞,+∞]n, Rn+ = [0,+∞)n, Rn− = (−∞, 0]n.
For x, y ∈ Rn, 〈x, y〉 =

∑n
i=1 xiyi, ‖x‖ := ‖x‖2 =(∑n

i=1 x
2
i

) 1
2 , and ‖x‖1 =

∑n
i=1 |xi|. For a closed subset

Ω ⊆ Rn and x ∈ Rn, dist(x,Ω) = infs∈Ω ‖x − s‖, int(Ω)
and bd(Ω) mean the interior and boundary of Ω in Rn,
respectively. For x ∈ Rn and δ, A(x) = {i : xi 6= 0} and
B(x, δ) indicates the open ball in Rn centered at x with radius
δ. ei ∈ Rn is the ith column of n-dimensional identity matrix.

II. PRELIMINARY RESULTS

In this section, we will first give some necessary basic
definitions and results. Then, the exact continuous relaxation
to (1) given in [17] is introduced in section II-B.

A. Definitions and properties

For a nonempty, closed and convex set Ω ⊆ Rn, the
projection to Ω at x is well-defined, i.e.

PΩ(x) = arg min
z∈Ω
‖z − x‖.

And it owns the following properties

〈u− PΩ(u), PΩ(u)− w〉 ≥ 0, ∀u ∈ Rn, w ∈ Ω; (2)
‖PΩ(u)− PΩ(w)‖ ≤ ‖u− w‖, ∀u,w ∈ Rn. (3)

Since X in (1) is defined by a simple box constraint, PX has
a closed-form solution for any x ∈ Rn, where

[PX (x)]i = max{bi,min{xi, ui}}, i = 1, 2, . . . , n.

For a function g : Rn → R, we call g is locally Lipschitz
continuous, if for any x, there exist δ > 0 and Lx > 0 such
that

|g(y)− g(z)| ≤ Lx‖y − z‖, ∀y, z ∈ B(x, δ).



Definition 2.1: For a locally Lipschitz continuous function
g : Rn → R and x ∈ Rn, the generalized directional derivative
of g at x in direction v ∈ Rn is defined by

g0(x; v) = lim sup
y→x;t→0+

g(y + tv)− g(y)

t
.

Then, the Clarke’s generalized gradient of g at x is provided
by

∂g(x) = {ξ ∈ Rn : g0(x; v) ≥ 〈v, ξ〉, for all v ∈ Rn}.

In particular, if g is convex on convex set Ω ⊆ Rn, then it
holds

g(y)− g(x) ≥ 〈ξ, y − x〉, ∀ξ ∈ ∂g(x), y ∈ Ω.

Definition 2.2: [36] For nonempty closed convex subset Ω ⊆
Rn and x ∈ Ω, the normal cone to Ω at x is

NΩ(x) = {η ∈ Rn : 〈η, y − x〉 ≥ 0, ∀y ∈ Ω}.

Denote F : Rn × R+ → Rn a continuous function. For a
non-autonomous real-time differential equation system:

ẋ(t) = F(x(t), t), (4)

we call x : [0, T ) → Rn with T > 0 a solution of (4) with
initial point x0, if x is absolutely continuous on [0, T ) and
satisfies (4) for almost all t ∈ [0, T ). Moreover, the following
chain rule is often used in the dynamic analysis of (4).

Proposition 2.1: [36] Suppose g : Rn → R is regular1 and
x : [0, T ) → Rn with T > 0 is absolutely continuous on any
compact set of [0, T ), then g(x(t)) is differentiable for almost
all t ∈ [0, T ) and

d

dt
g(x(t)) = 〈ξ, ẋ(t)〉, ∀ξ ∈ ∂g(x(t)).

B. Exact continuous relaxation to (1)

To solve (1), the authors in [17] introduced the following
Lipschitz continuous optimization model:

min fr(x) := l(x) + λp(x)

s.t. x ∈ X ,
(5)

where

p(x) =

n∑
i=1

min

{
1

ν
|xi|, 1

}
with ν > 0.

Function p can be formulated by a DC (difference-of-
convex) function [17], i.e.

p(x) =

n∑
i=1

1

ν
|xi| −

n∑
i=1

max{θ1(xi), θ2(xi), θ3(xi)},

where θ1(t) = 1
ν t− 1, θ2(t) = − 1

ν t− 1 and θ3(t) = 0.

1A Lispchitz continuous function g : Rn → R is said to be regular at x
provided the following conditions holds:

(i) for all v ∈ Rn, the usual one-sided directional derivative g′(x; v) =

limt→0+
g(x+tv)−g(x)

t
exists;

(ii) for all v ∈ Rn, g′(x; v) = g0(x; v).

Though (5) is a nonsmooth nonconvex programming, its
local minimizers have a necessary and sufficient condition,
which can be defined by the conditions for d-stationary point
of it. We call x∗ ∈ X is a d-stationary point of (5) if

ξi ∈ [∂l(x∗) +NX (x∗)]i +
λ

ν
∂|x∗i |,

for any i = 1, 2, . . . , n and ξi satisfying

ξi ∈


[−λ
ν
, 0]sign(xi) if |xi| = ν

{−sign(xi)} if |xi| > ν

{0} if |xi| < ν.

The exactness of problem (1) to (5) in the sense of global
minimizers is built up in [17].

Proposition 2.2: [17] Suppose

ν < min{ λ
Ll
, |bi|, |uj | : i, j = 1, 2, . . . , n, bi 6= 0, uj 6= 0},

where Ll is a Lipschitz constant of l on X . Then, x∗ ∈ X is a
global minimizer of (1) if and only if it is a global minimizer
of (5) and x∗ owns a lower bound property

if |x∗i | ≤ ν, then x∗i = 0. (6)

Moreover, if x̂ is a d-stationary point of problem (5), then x̂
is a local minimizer of problem (1).

How to provide other sufficient condition to ensure the
exactness of problem (5) to problem (1) in the sense of global
minimizers is an interesting topic. Since the objective function
in problem (5) is nonsmooth and nonconvex, we focus on the
critical points of it.

Definition 2.3: [37] We call x∗ ∈ X a critical point of
problem (5), if

0 ∈ ∂l(x∗) + λ∂p(x∗) +NX (x∗). (7)

Though finding the global minimizers of problem (1) is
strongly NP-hard in general, its local minimizers have a
sufficient and necessary condition.

Proposition 2.3: x∗ ∈ X is a local minimizer of problem
(1) if and only if it satisfies

0 ∈ [∂l(x∗) +NX (x∗)]A(x∗) , (8)

where A(x∗) = {i : x∗i 6= 0}.
Thanks to the convexity of l, x∗ ∈ X satisfies (8) if and

only if x∗ is a local minimizer of l on XA(x∗). For x∗ ∈ X , if
|x∗i | 6= ν, ∀i, we can easily find that x∗ is a critical point of
(5) if and only if x∗ is a local minimizer of problem (1). Thus,
finding the critical points of problem (5) is an interesting work
and of importance to the solving of problem (1).

III. PROPOSED NEURAL NETWORK

To propose a network with better convergence properties,
we will first construct a new smoothing function for the given
continuous relaxation p in (5), where some properties of the
smoothing function are also analyzed in section III-A. Based
on the relationships between (1) and (5) shown in section



II-B and the constructed smoothing function in section III-A,
we will propose a neural network modeled by a differential
equation to solve (5) in section III-B.

A. Smoothing approximations

Since convex function l in (5) can be nonsmooth, to simplify
the model of proposed network from differential inclusion to
differential equation, we introduce a smoothing function of it
defined as follows.

Definition 3.1: [17] For convex function l in (1), we call
l̃ : Rn × (0, 1] → R a smoothing function of it, if l̃ satisfies
the following conditions:
(i) for any fixed µ ∈ (0, 1], l̃(·, µ) is continuously differen-

tiable on X ;
(ii) for any fixed µ ∈ (0, 1], l̃(·, µ) is also convex on X ;

(iii) for any x ∈ X , {limz→x,µ↓0∇z l̃(z, µ)} ⊆ ∂l(x);
(iv) for any fixed x ∈ X , l̃(x, ·) is differentiable on (0, 1] and

there exists a positive constant κ such that

|l̃(x, µ2)− l̃(x, µ1)| ≤ κ|µ1 − µ2|, ∀µ1, µ2 ∈ (0, 1].

Item (iv) in Definition 3.1 implies that for any x ∈ X and
µ ∈ (0, 1], it holds

|∇µ l̃(x, µ)| ≤ κ and |l̃(x, µ)− l(x)| ≤ κµ, (9)

then

lim
µ↓0

l̃(x, µ) = l(x), ∀x ∈ X . (10)

How to construct a smoothing function for different l
satisfying the conditions in Definition 3.1 can be consulted
to [31], [34], [38], [39]. For example, if l(x) = ‖Ax − b‖1
with A ∈ Rm×n and b ∈ Rm, we can set

l̃(x, µ) =

m∑
i=1

ψ(Aix− bi, µ) (11)

with

ψ(s, µ) =


|s| if |s| > µ

s2

2µ
+
µ

2
if |s| ≤ µ.

Moreover, if l(x) = max{Ax − b,0} with A ∈ Rm×n and
b ∈ Rm, we can let

l̃(x, µ) =

m∑
i=1

ϕ(Aix− bi, µ) (12)

with

ϕ(s, µ) =


max{0, s} if |s| > µ

(s+ µ)2

4µ
if |s| ≤ µ.

Note that function p in (5) is also nonsmooth. Though we
can give a continuously differentiable function to approximate
p based on some existing smoothing functions, it brings us
some difficulties in analyzing the convergence of the proposed
network. For example, the monotone decreasing with respect
to the smoothing parameter is often not satisfied. So, we will
propose a continuously differentiable function to approximate

p not only satisfying conditions (i), (iii), (iv) in Definition 3.1,
but also owning some other properties, which will be much
helpful for the further convergence analysis. Set

p̃(x, µ) =

n∑
i=1

θ(xi, µ), (13)

where

θ(s, µ) =



1

2νaµ
s2 +

a

2ν
µ if |s| ≤ aµ

1

ν
|s| if aµ < |s| ≤ ν

− (|s| − ν − µ)2

2νµ
+ 1 +

1

2ν
µ if ν < |s| ≤ ν + µ

1 +
1

2ν
µ if |s| > ν + µ.

(14)

with fixed positive parameters a and µ satisfying aµ < ν. For
any fixed x ∈ Rn, we can easily verify that

lim
µ↓0

p̃(x, µ) = p(x). (15)

By simple calculation, the first and second derivative of
θ(s, µ) with respect to s for any fixed µ ∈ R++ can be
expressed by

θ′s(s, µ) =



1

νaµ
s if |s| ≤ aµ

1

ν
sign(s) if aµ < |s| ≤ ν

(ν + µ− |s|)sign(s)

νµ
if ν < |s| ≤ ν + µ

0 if |s| > ν + µ

(16)

and

θ′′s (s, µ) =



1

νaµ
if |s| < aµ

0 if aµ < |s| < ν

− 1

νµ
if ν < |s| < ν + µ

0 if |s| > ν + µ,

which implies that θ(·, µ) is Lipschitz continuously differ-
entiable for any µ ∈ R++. Thus, p(·, µ) is also Lipschitz
continuously differentiable for any µ ∈ R++ and

∇xp(x, µ) =

n∑
i=1

θ′(xi, µ)ei.

For the gradient consistence, for any x ∈ X , we also obtain

{ lim
z→x,µ↓0

∇z p̃(z, µ)} ⊆ ∂p(x). (17)

In a similar way, for any fixed x ∈ Rn, we obtain

θ′µ(s, µ) =



a

2ν
− 1

2νaµ2
s2 if |s| ≤ aµ

0 if aµ < |s| ≤ ν
µ2 − (µ+ ν − |s|)(µ− ν + |s|)

2νµ2
if ν < |s| ≤ ν + µ

1

2ν
if |s| > ν + µ,



which shows the continuously differentiability of p(x, ·) for
fixed x ∈ Rn. Moreover, we find that

θ′µ(s, µ) ≥ 0, ∀s ∈ R, µ ∈ (0, 1], (18)

which implies that p̃(x, ·) is non-decreasing on (0, 1].

B. Neural network model
Inspired by the previous analysis, we propose a neural

network modeled by a differential equation as follows{
ẋ(t) = −x(t) + PX

[
x(t)−

(
∇x l̃(x(t), µ(t)) + λ∇xp(x(t), µ(t))

)]
x(0) = x0,

(19)
where µ : [0,+∞) → (0, 1] is a monotone decreasing

function and converges to 0 as t tends to +∞. For example,
we can set it with the formulation

µ(t) = (t+ 1)−σ or µ(t) = e−σt (20)

with σ > 0. We refer that µ(t) in (20) can also be implemented
by circuits. For example, the first formulation in (20) is the
solution of the following system{

µ̇(t) = −σ−1(t+ 1)−σ−1,

µ(0) = 1.

IV. CONVERGENCE ANALYSIS OF NETWORK (19)

In this section, we will give some theoretical analysis on
network (19) including the global existence and uniqueness of
its solution, and then the convergence of the proposed network
for solving (5) is analyzed. For readability, we put the proof
of all results in this section to Appendix part.

Theorem 4.1: For any initial point x0 ∈ X , there ex-
ists a global solution to network (19). And any solution
x : [0,+∞) → Rn to network (19) satisfies x(t) ∈ X ,
∀t ∈ [0,+∞). Moreover, if ∇l̃(·, µ) is locally Lipschitz
continuous on X for any fixed µ ∈ (0, 1], the solution to
(19) with initial point x0 ∈ X is unique.
Next proposition shows a basic convergence of the solution to
network (19).

Proposition 4.1: Denote x : [0,+∞)→ Rn the solution of
(19) with initial point x0 ∈ X . Then, it holds
(i) limt→+∞ fr(x(t)) = limt→+∞ f(x(t)) exists;

(ii)
∫ +∞

0
‖ẋ(t)‖2dt < +∞.

It is a good news that the critical points of problem (5)
satisfy a similar lower bound property as in (6).

Proposition 4.2: If x̄ ∈ X is a critical point of problem (5),
then

if |x̄i| < ν, then x̄i = 0. (21)

And p(x̄) = ‖x̄‖0.
It is an interesting thing the lower bound in Proposition 4.2

is a necessary optimality condition for the global minimizers
but not for the local minimizers of (1), which is indicated in
the following example.

Example 4.1: Consider

min
|x1|≤1,|x2|≤1

|x1 + x2 − 1|+ ‖x‖0. (22)

By simple calculation, we verify that the global optimal
solution set of (22) is

M = {(0, 1), (1, 0), (0, 0)},

while the local optimal solution set is

LM = {x ∈ R2 : x1 +x2−1 = 0, −1 ≤ x1 ≤ 1}
⋂
{(0, 0)}.

We see that all points in M satisfy (6) with ν <
√

2
2 , while

the points in LM are not all. And the critical point set of
corresponding problem (5) for (22) is

LM
⋂
{|x1| ≥ ν, |x2| ≥ ν}

⋃
{(0, ν), (ν, ν), (ν, 0), (0, 0)},

which is a proper subset of LM as removing
{(0, ν), (ν, ν), (ν, 0)}.

To prove some further properties of network (19), we need
to illustrate an important property of the solution to network
(19) at first.

Proposition 4.3: Denote x : [0,+∞)→ Rn the solution of
(19) with initial point x0 ∈ X . Then, there exists a T > 0
such that once there exist i ∈ {1, 2 . . . , n} and T1 ≥ T such
that |xi(T1)| ≤ ν, then limt→+∞ xi(t) = 0.

Theorem 4.2: Denote x : [0,+∞) → Rn the solution of
(19) with initial point x0 ∈ X . Then, any accumulation point
x(t) is a critical point of problem (5). Moreover, if x∗ and
x̂ are two accumulation points of x(t) as t → +∞, then
A(x∗) = A(x̂).

V. NUMERICAL EXPERIMENTS

In this section, we illustrate the performance of proposed
network (19) for solving (1) by three examples. We use ode45
in Matlab 2016b on a Lenovo PC to run the codes.

Example 5.1: In this example, we test the effectiveness of
the proposed network for a simple linear regression problem,
a special case of which is used in Example 4.1

min
|x1|≤1,|x2|≤1

|x1 + x2 − 1|+ λ‖x‖0. (23)

Since Ll =
√

2, by simple calculation, we can let ν = 0.7λ <

λ
√

2
2 in (5) when 0.7λ < 1. Define the smoothing function of

l in (23) as in (11). Set a = 1 in (13) and

µ(t) = 10−3/
√
t+ 1.

For different values of λ, the global minimizers of (23) and
the corresponding ν satisfying the conditions in Proposition
2.2 are listed in Table I. For these different cases of λ, the
limit points of the solution to (19) with different initial points
are shown in Table II. From Table II, we see that though this
class of problem is NP-hard in general, we can also find its
global minimizers by network (19). Fix λ = 1 and λ = 1.2, the
trajectories of network (19) with initial point x0 = (0.2, 0.8)T

are pictured in Fig. 1 and Fig. 2, respectively.
Example 5.2: Linear regression is one of the most well-

known models in statistics and machine learning. Linear
regression in machine learning is a supervised learning tech-
nique that comes from classical statistics. One method to



TABLE I
DIFFERENT VALUES OF λ AND ν FOR PROBLEM (23)

λ global minimizers ν

0.9 (1, 0)T , (0, 1)T 0.6

1 (1, 0)T , (0, 1)T , (0, 0)T 0.7

1.2 (0, 0)T 0.8

TABLE II
LIMIT POINTS OF SOLUTIONS TO NETWORK (19) WITH DIFFERENT λ AND

INITIAL POINTS

λ initial points limit points
0.9 (0.8, 0.2)T /(0.2, 0.8)T (1, 0)T /(0, 1)T

1 (0.8, 0.2)T /(1, 1)T /(0.2, 0.8)T (1, 0)T /(0, 0)T /(0, 1)T

1.2 (0.8, 0.2)T /(1, 1)T /(0.2, 0.8)T (0, 0)T /(0, 0)T /(0, 0)T

characterize the linear fitting is to minimize the `1 function.
So, we consider the linear regression problem with `1 loss
function and cardinality regularization in this example, which
is modeled by

min
x∈X
‖Ax− b‖1 + λ‖x‖0, (24)

where X = {x : −1 ≤ x ≤ 1}, A ∈ Rm×n
and b ∈ Rm are generated randomly by the following
codes for given positive integers (n,m, s) = (20, 10, 5):
I=randperm(n); I=I(1:s); x?=zeros(n,1);
B=randn(n,m); x?(I)=unifrnd(-1,1,[s,1]);

A=orth(B)’; b = A*x
?.

We calculate Ll by Ll = ‖A‖∞ and define ν = min{λ/(Ll+
1), 1}. Set λ = 0.5. To show the efficiency, we use the mean
square error (MSE) to evaluate it, where

MSE(x) =
‖x− x?‖2

n
.

The MSE of the solution to (19) with a random initial point
in X is pictured in Fig. 3.

Example 5.3: Feature selection is one of the popular prob-
lems in machine learning. The main goal is to select a subset
of main features based on the given data which preserving
the right ability of the classification. In this example, we
test the prostate cancer data by network (19), in which
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the goal is to find the main predictors as fewer as better
while preserving the right justification. The date set is from
https://web.stanford.edu/ hastie/ElemStatLearn/data.html. This
set contains the medical records of 97 men who were about
to receive a radical prostatectomy. There are eight clinical
measures as the predictors, which are lcavol, lweight, age,
lbph, svi, lcp, pleason and pgg45. To test the effect of the
proposed method, we divide the set into two classes, in which
one is the training set with 67 data and the other is the test
set with 30 data. The model is as follows

min
0≤x≤1

log(‖Ax− b‖2 + 1) + 100‖x‖0, (25)

where A ∈ R67×8 and b ∈ R67 are defined by the codes in
training set. Set Ll = 2‖ATA‖∞ and then choose ν = 0.1814.
Define µ(t) = 1

10(t+1) .
We evaluate the performance by the prediction error, which

is defined by the mean square error over the 30 data in
test set. A smaller prediction error is better. The solution to
network (19) with initial point x0 = (1, 1, . . . , 1)T is shown
in Fig. 4. In addition, the convergence of smoothing function
of objective function along the solution is pictured in Fig. 5,
where

f̃r(x, µ) = log(‖Ax− b‖2 + 1) + 100p(x, µ).



Meantime, the prediction error values along the solution are
shown in Fig. 6. The results obtained are listed in Table III,
where the best results of FOIPA [40], SSQP [41] and Lasso
[42] are also listed. From the results in Table III, we see that
neural network (19) can find the right 3 main predictors with
the smallest prediction error.

0 5 10 15 20

t

0

0.2

0.4

0.6

0.8

1

x
1
(t)

others

x
2
(t)

x
5
(t)

Fig. 4. Trajectory of (19) for Example 5.3
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VI. CONCLUSIONS

In this paper, we considered the sparse optimization problem
with a nonsmooth convex loss function, cardinality regulariza-

TABLE III
NUMERICAL RESULTS OF NETWORK (19) AND SOME OTHER METHODS

(19) FOIPA SSQP LASSO
x̄1 0.6134 0.6479 0.6437 0.533
x̄2 0.3145 0.2941 0.2765 0.169
x̄3 0 0 0 0
x̄4 0 0 0 0.002
x̄5 0.2222 0.1498 0.1327 0.094
x̄6 0 0 0 0
x̄7 0 0 0 0
x̄8 0 0 0 0
Prediction error 0.4002 0.4194 0.4262 0.479

tion and box constraints. Based on its continuous relaxation
and a new given smoothing function, we proposed a neural
network modeled by a differential equation to solve it. Thanks
to the smoothing method, we proved that the solution to the
proposed network is global existent and unique. Further, we
proved that all accumulation points of the solution to proposed
network are critical points of the used continuous relaxation
problem, which are local minimizers of the considered sparse
optimization problem except for some special and easily justi-
fied cases. Moreover, all accumulation points own a common
support set and a desirable lower bound for the nonzero
elements. Finally, numerical results shew the promising effect
of the proposed network for solving the considered sparse
optimization problems.

VII. APPENDIX

A. Proof of Theorem 4.1

By the preliminary analysis in sections II-A and III-A, the
right-hand function of (19) is continuous with respect to x
and µ. Then, by [43, Theorem 1.1], network (19) exists at
least one solution x(·) defined on [0, T ) with T > 0. To prove
its global existence, we argue it by contradiction and assume
the maximal existence interval of it is [0, T ).

Reformulate (19) as

ẋ(t) + x(t) = η(x(t), µ(t)), (26)

where

η(x, µ) = PX

[
x−

(
∇x l̃(x, µ) + λ∇xp(x, µ)

)]
.

By (26), we have

x(t) = e−tx0 + (1− e−t)
∫ t

0

es

et − 1
η(x(s), µ(s))ds. (27)

Owning to the continuity of function η, convexity of X and∫ t
0

es

et−1ds = 1, since η(x(t), µ(t)) ∈ X , ∀t ∈ [0, T ), we
obtain ∫ t

0

es

et − 1
η(x(s), µ(s))ds ∈ X , ∀t ∈ [0, T ).

Using the convexity of X again, (27) implies

x(t) ∈ X , ∀t ∈ [0, T ).



Recalling the boundedness of X , we get that x is bounded
on [0, T ). This together with the structure of (19) implies
the boundedness of ẋ on [0, T ). Thanks to [43, Lemma 2.1],
this solution x to (19) can be extended, which leads to a
contradiction. Thus, there exists a global solution x to (19)
with initial point x0 ∈ X , which is defined on [0,+∞).

Following a similar analysis, we derive that

x(t) ∈ X , ∀t ∈ [0,+∞).

Next, we will argue the uniqueness of the solution to (19) by
contradiction. Assume both x and y be two different solutions
of (19) with the given initial point x0 ∈ X . Since x and y are
absolutely continuous on [0,+∞), there exist t̄ ∈ (0,+∞)
and τ > 0 such that

x(t) 6= y(t), ∀t ∈ [t̄, t̄+ τ ].

When ∇l̃(·, µ) is locally Lipschitz continuous on X for any
fixed µ > 0, since µ(t) ≥ µ(t̄+ τ) > 0, ∀t ∈ [t̄, t̄+ τ ], there
exists L1 > 0 such that for all t ∈ [t̄, t̄+ τ ],

‖∇l̃(x(t), µ(t))−∇l̃(y(t), µ(t))‖ ≤ L1‖x(t)− y(t)‖.

Similarly, by (16), there exists L2 > 0 such that for all t ∈
[t̄, t̄+ τ ],

‖∇p(x(t), µ(t))−∇p(y(t), µ(t))‖ ≤ L2‖x(t)− y(t)‖.

Combining the above results with the Lispchitz property of
projection operator PX given in (3), it implies the existence
of L > 0 such that for all t ∈ [t̄, t̄+ τ ],

‖−x(t)+η(x(t), µ(t))+y(t)−η(y(t), µ(t))‖ ≤ L‖x(t)−y(t)‖.

Then, differentiating ‖x(t) − y(t)‖2 along the two solutions
of (19) gives

d

dt
‖x(t)− y(t)‖2 =2〈x(t)− y(t), ẋ(t)− ẏ(t)〉

≤2L‖x(t)− y(t)‖2.

Integrating the above inequality from 0 to t ∈ (0, t̄+τ ] shows

‖x(t)− y(t)‖2 ≤ 2L

∫ t

0

‖x(s)− y(s)‖2ds.

Since x(0) = y(0) = x0, using the Gronwall’s inequality [36]
to it gives

x(t) = y(t), ∀t ∈ (0, t̄+ τ ],

which leads to a contraction to the hypothesis. Thus, the
solution to network (19) with initial point x0 ∈ X is unique.

B. Proof of Proposition 4.1

(i) Since x(t) ∈ X , ∀t ∈ [0,+∞) and X is a closed
convex set, by setting w = x(t) and u = x(t) −
α
(
∇x l̃(x(t), µ(t)) + λ∇xp(x(t), µ(t))

)
in (2) and from (19),

we obtain

〈∇x l̃(x(t), µ(t)) + λ∇xp(x(t), µ(t)), ẋ(t)〉 ≤ −‖ẋ(t)‖2.
(28)

Then, by (9), (18) and (28), we have

d

dt

[
l̃(x(t), µ(t)) + λp̃(x(t), µ(t))

]
=〈∇x l̃(x(t), µ(t)) + λ∇xp̃(x(t), µ(t)), ẋ(t)〉

+
(
∇µ l̃(x(t), µ(t)) +∇µp̃(x(t), µ(t))

)
µ̇(t)

≤− ‖ẋ(t)‖2 − κµ̇(t),

(29)

where the last inequality uses the non-decreasing of p̃(x, ·)
with respect to µ and the non-increasing of µ(t) on [0,+∞).

Reformulating (29) gives

d

dt

[
l̃(x(t), µ(t)) + λp̃(x(t), µ(t)) + κµ(t)

]
≤ −‖ẋ(t)‖2.

(30)
Consequently, l̃(x(t), µ(t)) + λp̃(x(t), µ(t)) + κµ(t) is non-
increasing on [0,+∞). Combining this with

l̃(x, µ) + λp̃(x, µ) + κµ ≥ l(x) + λp(x) ≥ min
X

l (31)

derived from (9) and (18), we find the existence of

lim
t→+∞

fr(x(t))

= lim
t→+∞

[
l̃(x(t), µ(t)) + λp̃(x(t), µ(t)) + κµ(t)

]
= lim
t→+∞

[l(x(t)) + λp(x(t))] = lim
t→+∞

f(x(t)),

where the first equality follows from (10) and (15).
(ii) Integrating (30) from 0 to +∞ and by (31), we obtain

the estimation in item (ii).

C. Proof of Proposition 4.2

Suppose x̄ is a critical point of problem (5) and (21) does
not hold for x̄. Then there exists î ∈ {1, 2, . . . , n} such that
0 < |xî| < ν. From the definition of critical point, we have

0 ∈ [∂l(x̄) +NX (x̄)]i +
λ

ν
sign(x∗i ),

which combining with [NX (x̄)]i = 0 implies λ
ν ≤ Ll. This

leads to a contradiction to ν < λ
Ll

and then (21) holds. Thus,

p(x̄) = ‖x̄‖0.

D. Proof of Proposition 4.3

Set

ε = min{λ− νLl
2ν

, |bi|− ν, uj − ν, i, j = 1, . . . , n, biuj 6= 0}.

Recalling limt→+∞ µ(t) = 0 and Definition 3.1-(iii), there
exists T > 0 such that aµ(t) < ν/2 and ‖∇x l̃(x(t), µ(t))‖ <
Ll + ε, ∀t ≥ T , which indicates

λ

ν
> Ll + 2ε ≥ ‖∇x l̃(x(t), µ(t))‖+ ε, ∀t ≥ T.

Suppose there exists a T1 ≥ T such that 0 < xi(T ) ≤ ν. In
view of (16), if aµ(t) ≤ xi(t) ≤ ν, then

[∇xp̃(x(t), µ(t))]i = θ′s(xi(tk), µ(tk)) =
1

ν
,



which implies

wi(t) :=
[
∇x l̃(x(t), µ(t)) + λ∇xp̃(x(t), µ(t))

]
i
> ε.

Then,

ẋi(t) = −xi(t) + P[bi,ui][xi(t)− wi(t)] ≤ −ε, (32)

which indicates that xi(t) ≤ xi(T1) − ε(t − T1) as long as
aµ(t) < xi(t) < ν and t ≥ T1. Similarly, if there exists
T1 ≥ T such that xi(T1) < 0, then xi(t) ≥ xi(T1)+ ε(t−T1)
as long as −ν < xi(t) < −aµ(t). Therefore, we can conclude
that limt→+∞ xi(t) = 0.

E. Proof of Theorem 4.2

Denote C the critical point set of problem (5), i.e.

C = {x ∈ X : 0 ∈ ∂l(x∗) + λ∂p(x∗) +NX (x∗)},

which is a closed set due to the upper semicontinuity of ∂l
and ∂p. We will prove this result by contradiction.

If not, there exists a subsequence {tk} and x∗ ∈ X such
that

lim
k→+∞

tk = +∞, lim
k→+∞

x(tk) = x∗ 6∈ C.

Set
lim

k→+∞
dist(x(tk), C) = 2ι > 0.

Then, there exists K such that

lim
k→+∞

dist(x(tk), C) ≥ ι, ∀k ≥ K.

Using the boundedness of X , ẋ is bounded on [0,+∞).
Denote σ > 0 such that

‖ẋ(t)‖ ≤ σ, ∀t ∈ [0,+∞). (33)

Next, we will show that there exists ε > 0 such that

‖ẋ(t)‖ ≥ ε, ∀t ∈ [tk, tk + ι/2σ]. (34)

If not, there exists a sequence sk ∈ [tk, tk + ι/2σ] such that

lim
k→+∞

sk = +∞ and lim
k→+∞

ẋ(sk) = 0.

On the one hand, since {x(sk)} ⊆ X is bounded, there
exist a subsequence of {x(sk)} (also denoted as {x(sk)}) and
x̃ ∈ X , such that limk→+∞ x(sk) = x̃. Invoking of (19), by
limk→+∞ µ(sk) = 0, Definition 3.1-(iii) and (17), it gives

x̃ ∈ PX [x̃− ∂l(x̃)− λ∂p(x̃)] , (35)

which indicates that x̃ is a critical point of problem (5).
On the other hand, for any t ∈ [tk, tk + ι

2σ ] and x̄ ∈ C, we
find that

‖x(t)−x̄‖ ≥ ‖x(tk)−x̄‖−‖x(t)−x(tk)‖ ≥ ι−σ(t−tk) ≥ ι/2.

Thus, any accumulation point of x(t) for t ∈ [tk, tk + ι/2σ]
is not a critical point of (5), which leads to a contradiction to
(35) and then (34) holds.

Notice that∫ +∞

0

‖ẋ(t)‖2dt ≤
+∞∑
k=1

∫ tk+ι/2σ

tk

‖ẋ(t)‖2dt = +∞,

which also leads to a contradiction to the result in Proposition
4.1-(ii). Therefore, we can conclude that any accumulation
point of x(t) is a critical point of problem (5).

To prove A(x∗) = A(x̂), we argue it by contradiction.
Without loss of generality, we suppose that there exists
i ∈ {1, 2, . . . , n} such that x∗i > 0 but x̂i = 0. Denote
{tk} and {sk} be the sequences converging to x∗ and x̂,
respectively. By (21), we have x∗i ≥ ν, where ν < ui. Since
limk→+∞ xi(tk) = x∗i > 0 and limk→+∞ xi(sk) = 0, there
exists T2 ≥ T such that 0 < xi(T2) < ν. By Proposition 4.3,
we have limt→+∞ xi(t) = 0, which leads to a contradiction
to the supposition.
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