
EasyChair Preprint
№ 13700

TriMod Fusion for Multimodal Named Entity
Recognition in Social Media

Mosab Alfaqeeh

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 18, 2024



TriMod Fusion for Multimodal Named Entity
Recognition in Social Media

Mosab Alfaqeeh
Queen’s University, Ontario , Canada

Email: 18mmoa@queensu.ca

Abstract—Social media platforms serve as invaluable
sources of user-generated content, offering insights into
various aspects of human behavior. Named Entity Recogni-
tion (NER) plays a crucial role in analyzing such content by
identifying and categorizing named entities into predefined
classes. However, traditional NER models often struggle
with the informal, contextually sparse, and ambiguous na-
ture of social media language. To address these challenges,
recent research has focused on multimodal approaches
that leverage both textual and visual cues for enhanced
entity recognition. Despite advances, existing methods face
limitations in capturing nuanced mappings between visual
objects and textual entities and addressing distributional
disparities between modalities. In this paper, we propose
a novel approach that integrates textual, visual, and hash-
tag features (TriMod), utilizing Transformer-attention for
effective modality fusion.

The improvements exhibited by our model suggest that
named entities can greatly benefit from the auxiliary con-
text provided by multiple modalities, enabling more accu-
rate recognition. Through the experiments on a multimodal
social media dataset, we demonstrate the superiority of our
approach over existing state-of-the-art methods, achieving
significant improvements in precision, recall, and F1 score.
Our work represents a significant step forward in the field
of multimodal named entity recognition, showcasing the
potential of deep learning techniques to tackle challenging
real-world problems.

I. INTRODUCTION

Social media platforms like Facebook, Twitter, Tik-
Tok, and Instagram serve as vast repositories of user-
generated content, offering valuable insights into hu-
man behavior. These platforms are more than just
text—they’re a rich tapestry of multimedia content, from
images to hashtags and beyond. Each element contributes
to the intricate mosaic of online discourse, providing nu-
anced insights into societal trends, cultural phenomena,
and emerging narratives[1], [2].

Among the wealth of information shared on these
platforms, Named Entity Recognition (NER) plays a
pivotal role in deciphering user posts by identifying and
categorizing named entities into predefined classes. This
task serves as a crucial step for various downstream
applications, including but not limited to marketing
intelligence [3], sentiment analysis [4], event detection
and tracking [5], and content recommendation systems
[6].

Traditional neural-based named entity recognition
(NER) models have demonstrated high performance
when analyzing newswire content. However, these mod-
els often struggle when applied to social media texts [7],
[8], [9], [10]. Some of the key reasons include:

1) Informal Language and Noisy Data Social me-
dia texts are characterized by informal language,
abbreviations, slang, and noisy data, which can
be difficult for traditional NER models to han-
dle effectively. The models trained on well-edited
newswire content may not generalize well to the
more colloquial and unstructured nature of social
media posts [11].

2) Lack of Context Social media posts are often
short and lack the broader context that is typically
available in newswire articles. This can make it
challenging for NER models to accurately identify
and classify named entities, as they rely on contex-
tual information to make these determinations[12],
[10].

3) Evolving Terminology and Entities The language
used on social media is constantly evolving, with
new terms, entities, and concepts emerging reg-
ularly. Traditional NER models may struggle to
keep up with these changes, leading to decreased
performance over time[13], [14], [15].

4) Ambiguity and Sparsity Social media texts can
be ambiguous, with named entities that are difficult
to disambiguate or that appear infrequently. This
can pose challenges for NER models, which often
rely on patterns and frequency of occurrence to
identify and classify named entities[16], [13], [10],
[17].

To overcome these challenges, recent advances have
introduced multimodal approaches that combine textual
and visual cues to improve entity recognition. However,
these methods face two main limitations:

1) Visual-Textual Entity Mapping: Prior multi-
modal NER models often struggle to accurately
map the visual objects within images to the cor-
responding named entities in the textual content.
This is particularly problematic in cases where
a sentence contains multiple entities of different



types. For instance, associating the visual object
“person” with the hashtag “#AustonMatthews” is
relatively straightforward, but linking “three puck”
text to the “#HatTrick” hashtag requires a more
nuanced understanding. Failing to capture these
intricate relationships can lead to erroneous entity
extractions [10], [18], [19].

2) Cross-Modal Feature Alignment: Existing mul-
timodal approaches typically concatenate textual
and visual features without adequately addressing
the inherent distributional differences between the
two modalities. As a result, the crucial alignments
between named entities and their corresponding
image regions are often overlooked, leading to
suboptimal NER performance [20], [21].

To address the limitations of prior multimodal named
entity recognition (NER) approaches, we propose a novel
architecture that effectively integrates textual, visual, and
hashtag features through Transformer-attention-based
modality fusion. Our key contributions are as follows:

1) Visual-Textual Entity Mapping: We incorporate
object-level visual features to capture the intri-
cate mappings between visual objects, processed
hashtags, and corresponding named entities in the
text. For example in Fig .1, Our model can as-
sociate the visual object of a “hockey rink” with
the venue “#ScotiabankArena”, team logos/jerseys
with #TorontoMapleLeafs, “Hockey player” with
“#AustonMatthews”, and “puck and net” with
#HatTrick. Also hashtags (e.g., “Auston Matthews”
and #AustonMatthews), as well as hashtags and
relevant text (e.g., HatTrick and “ScoreThree-
Times” hashtag).

2) Cross-Modal Feature Alignment: We harness the
power of Transformer-attention to address the
distributional disparities between modalities. Our
architecture learns to effectively align and combine
the textual, visual, and hashtag features, exploiting
the crucial correspondences between named enti-
ties, their associated image regions, and relevant
hashtags for improved NER performance.

By integrating these key components, our approach
offers a comprehensive solution for accurate and con-
textually aware named entity recognition in social media
posts, overcoming the limitations of previous multimodal
methods. For instance, recognizing the ORG entity
“Maple Leafs” as a hockey team name may require
information coming from modalities like hashtags and
images, such as “ball” “person” and “#Tonightgame”
Similarly, the MISC entity “German Shepherd” can
be identified as a dog’s name with the assistance of
the information extracted from the image visual, which
includes “dog” and the hashtag “#PlayingWithDog”.

Fig. 1: Mappings between visual objects, processed hashtags,
and corresponding named entities in the text.

II. RELATED WORK

A. Named Entity Recognition

Traditional NER systems relied on hand-crafted fea-
tures fed into linear classifiers [22]. With the advent
of deep learning, feature engineering efforts were re-
duced as neural models achieved state-of-the-art perfor-
mance on standard NER datasets [23]. These include
end-to-end models utilizing recurrent neural networks
(RNNs) [24], [25] accompanied by conditional random
fields (CRFs) [23]. More recently, self-attention-based
methods [26], [27] have further boosted NER perfor-
mance. However, most of these approaches are text-
based and lack consideration for social media scenarios.

B. Multimodal Named Entity Recognition

The massive growth of multimodal data on social
media platforms has prompted research into extending
conventional text-based NER by incorporating visual in-
formation. Early studies employed canonical correlation
analysis (CCA) [28] to learn feature correlations across
modalities. With deep learning, Lu et al. [29] utilized
an attention-based model to extract relevant regional
image features and fuse them with text features. Zhang



et al. [30] introduced an adaptive co-attention network
to automatically control the combination of image and
text representations. Chen et al. [31] argue that MNER
approaches typically assume strict matching between the
textual content and the associated images, an assumption
that does not hold for many real-world social media
posts. Asgari et al. [32] extract image features and use
fusion to combine textual and image features.

As transformer architectures in [33] and [34] demon-
strated superiority, recent work [35] enhanced MNER
performance by introducing an auxiliary entity span de-
tection module. Another transformer-based method [36]
utilized graph neural networks (GNNs) [37] to capture
semantic relationships between entities, albeit requir-
ing pre-trained models and complicated pre-processing
steps. Since transformers excel at guiding words to cap-
ture semantic dependencies within their context, mod-
ified transformers can guide words to learn image-text
dependencies [38].

III. PROBLEM STATEMENT

Consider a social media post containing named enti-
ties. Let N denote the total number of named entities in
the post. We aim to develop a Multimodal Named Entity
Recognition (MNER) model that effectively integrates
textual, visual, and hashtag information to accurately
identify and classify the named entities.

Let T represent the number of tokens (words) in the
textual content, V denote the number of visual objects
detected in the associated image, and H indicates the
number of hashtags present in the post.

Define the following functions:

f(T ) : Performance of a text-based NER model, a
function of T

g(V,H) : Performance improvement achieved by incor-
porating visual and hashtag information, a
function of V and H

The objective is to maximize the overall performance
of the MNER model by effectively combining the text-
based NER performance f(T ) with the performance
improvement g(V,H) achieved by incorporating visual
and hashtag information:

The optimization problem is formulated as follows:

Maximize: f(T ) + g(V,H)

Subject to: T ≥ 0, V ≥ 0, H ≥ 0

Relationship constraints

Let f(T ) represent the performance of the text-based
Named Entity Recognition (NER) component. g(V,H)
represents the performance improvement achieved by
incorporating visual, hashtag information and the tech-
nique used to encode hashtag embeddings (H).

IV. METHODOLOGY

Our methodology involves the following key steps:

A. Textual Feature Extractor:

ξωj = ϵω(τj), (1)

where ϵω denotes a word embeddings lookup table, and
ξωj ∈ Rmω . We initialize this table with pre-trained 200-
dimensional Word2Vec embeddings [39].

Analogous to state-of-the-art Named Entity Recogni-
tion (NER) techniques [40] [41], we utilize both word
embeddings and character embeddings to represent each
token in the input phrase. For a given input phrase, each
token τj is initially projected into a latent space using
word embeddings.

Previous research has demonstrated that incorporat-
ing character representations can enhance Named En-
tity Recognition (NER) performance by capturing mor-
phological and semantic information [42]. Following a
similar approach to Park and Lee [43], we employ a
Bidirectional Gated Recurrent Unit (Bi-GRU) network
to extract character-level representations. Each token in
the input sentence is treated as a sequence of characters:
ϕi = {αi,1, αi,2, ..., αi,m}, where αi,j denotes the j-th
character of the i-th token, and m is the token length.
We first represent each character αi,j by its character
embedding ϵc(αi,j), where ϵc is a character embeddings
lookup table initialized randomly. We then feed the
embedding ξci,j ∈ Rdce of each character of token ϕi

into the Bidirectional GRU to obtain hidden states:

−→z ci,1, ...,
−→z ci,m and ←−z ci,1, ...,

←−z ci,m. (2)

The final character-level representation for token ϕi is
the concatenation of the forward and backward hidden
states:

ξci = [−→z ci,m;←−z ci,1], (3)

where ξci ∈ Rdc , and dc is the hidden state dimension
of the Bi-GRU.

The token representation ξti is obtained by concate-
nating the word embedding ξwi and the character-level
representation ξci:

ξti = [ξwi; ξci], (4)

where ξti ∈ Rdw+dc . To capture contextual information,
we feed the token representation ξti into another Bi-
GRU. The forward and backward hidden states of token
ϕi are computed as follows:

−→z ti = Bi-GRU(ξti,
−→z ti−1), (5)

←−z ti = Bi-GRU(ξti,
←−z ti+1). (6)



The projected textual features are represented by con-
catenating the forward and backward hidden states of
token ϕi:

hti = [−→z ti;
←−z ti]. (7)

Here, hti ∈ Rd denotes the projected token fea-
tures, summarizing the token ϕi. The projected fea-
tures for the entire sentence can be denoted as GT =
{ht1, ht2, ..., htn} ∈ Rd×n, where n is the number of
tokens in the sentence. We define θT as the parameter
set of embedding layers and Bi-GRU layers.

B. Visual Feature Extractor:

Image-level information alone cannot effectively aid
in extracting entities of different types. We employed
a sequence-to-sequence encoder-decoder framework for
image captioning, inspired by its success in machine
translation tasks. Our approach is based on the deep
learning technique introduced by Alfaqeeh et al. [44]
for the task of processing images to generate textual
descriptions. For image encoding, we utilized the pre-
trained ResNet [45] architecture to transform an image
into a latent space representation. The decoder in our
network consists of a recurrent neural network for gen-
erating the caption (see Fig. 2). Thus, only the decoder
part had to be trained. We trained the model using a
typical sequence-generating approach, i.e., we trained
the model to predict the next (most likely) word in the
sequence. The convolutional neural network is based on
a 2D CNN model using basic neuron networks. One
CNN layer contains multiple “filters” each represented
by a different matrix (on a different channel). CNN filters
can be defined arbitrarily in terms of their number and
size. CNN models use filters as feature extractors. Filters
scan images, extracting features from them (or their last
output results). When a CNN model is trained, the filters
are optimized to extract features more efficiently. Given
an image I with three color channels, we can apply a
3×3 size filter across the image. Let Ii,j denote the pixel
value at position (i, j) in the image, and F represent the
filter matrix. The convolution operation can be expressed
as:

(I ∗ F )i, j =
∑

m,nIi+m,j+nFm,n (8)

We can observe that the resolution of an image decreases
after filter scanning. For example, a 3×5 image may be
reduced to 1×2 after convolution with a 3×3 filter. While
this approach works well for shallow models (fewer
layers), the effects of degradation make it challenging
to determine the original image’s appearance in deeper
models with many layers. To address the degradation
problem, ResNet introduces a residual learning frame-
work based on the concept of shortcuts. Instead of adding
layers to the output, the data is copied, skipped, and then
added to the output. This allows the deep layers to access

the original data. The pre-trained ResNet we used is a
ResNet model with 50 layers.

C. Hashtag Feature Extraction:

In social media posts, hashtags often provide valuable
contextual information that can aid in understanding
the content. To incorporate hashtag features into our
multimodal named entity recognition (NER) model, we
extract features from hashtags and integrate them with
textual and image features.

We employed the approaches by Bansal et al. [46]
and Cho et al. [47] to develop a hashtag processing
technique. It consists of a training step with a non-
standard dataset and a segmentation module using neural
networks for word separation, inspired by Cho et al.
[48]. Character-based tokenization identifies individual
characters in text, avoiding out-of-vocabulary words and
enabling misspelling correction. We used a skip-gram
model [49], [50] to embed characters into vectors:

c⃗i = ϕ(ci) (9)

where c⃗i ∈ Rd is the embedding of character ci, and ϕ
is the embedding function.

The character embeddings C⃗ = c⃗1, c⃗2, . . . , c⃗n are fed
into CNN and BiLSTM networks for encoding the input
sentence (Figure 2).

D. Processing the Output

A decoder network determines the segmentation for
input character vectors h⃗ = h⃗1, h⃗2, . . . , h⃗n:

P (si |⃗h, ci) = Decoder(h⃗i, c⃗i) (10)

where si ∈ 0, 1 represents the presence/absence of a
space after character ci. The decoder is trained to pre-
dict the correct segmentation by minimizing the cross-
entropy loss.

The hashtag features are then integrated with the
existing textual and image features using Transformer-
attention mechanism during fusion.

By incorporating hashtag features, our multimodal
NER model can leverage additional contextual infor-
mation provided by hashtags, enhancing its ability to
recognize named entities in social media posts.

E. Fusion:

Multimodal information in social media posts, includ-
ing text, images, and hashtags, can provide valuable con-
text for understanding entities mentioned in sentences.
However, leveraging modality-level information alone
may not suffice to extract entities of different types effec-
tively. To address this, we propose a method that utilizes
Transformer-attention solely for fusing modalities.

We use Transformer-attention to fuse these features
from different modalities. The attention weight for each



Fig. 2: The fused representation fs, which integrates information from text, images, and hashtags using Transformer-attention.

feature fi is computed using the best parameters showed
in [51], [52]:

f ′
i = Wm×d

2 · fi + bγi
= exp(ud×1

t · tanh(f ′
i)) (11)

To reshape the dimension of feature fi, we feed it
through a w× d dimensional fully connected layer. The
weight of the i-th feature fi is processed through the
tanh function, which is then fed to the exponential
function along with the dot product of ud×1

t . The output
from the exponential function is then passed through a
1-dimensional fully connected layer.

Finally, from the Transformer-attention mechanism,
we formulate all the features into a single feature fs
as follows:

fs =

∑n
i=1 γifi∑n
i=1 γi

(12)

This fused representation fs integrates information
from text, images, and hashtags using Transformer-
attention, allowing the model to capture relationships and
dependencies between modalities effectively.

F. Output layer

Conditional Random Fields (CRF) have been widely
used as a decoding layer in Named Entity Recognition
(NER) models due to their ability to model dependencies
between output labels and improve the overall perfor-
mance of the model.

In the context of NER with multimodal fusion using
Transformer-attention, incorporating CRF as the decod-
ing layer enhances the model’s capability to capture
contextual dependencies between predicted entity labels.
The CRF layer takes the fused features as input and
outputs the most likely sequence of entity labels based
on the learned features.

Mathematically, let GT = {ht1, ht2, ..., htn} ∈ Rd×n

represent the fused textual features of the input sentence,
where d is the dimension of the projected token features
and n is the number of tokens in the sentence. The output
of the CRF layer is a sequence of predicted labels L =
{l1, l2, ..., ln}.

The CRF layer computes the score for the predicted
label sequence L as follows:

score(L) =
n+1∑
i=1

Tl[i−1]→l[i] +

n∑
i=1

Py[i]→i (13)

where T is the transition scores matrix and P is the
matrix of scores obtained from the encoder network.
Here, Ti→j represents the transition score from label i to
label j, and Py[i]→i represents the score of the i-th word
in the sentence belonging to the predicted label y[i].

The probability of the sequence of predicted labels L
is computed using the softmax function:

p(L|GT ) =
exp(score(L))∑
L′ exp(score(L′))

(14)



During training, the log-probability of the correct
tag sequence L is maximized to train the CRF layer
effectively.

Incorporating CRF as a decoding layer in NER mod-
els with multimodal fusion using Transformer-attention
allows the model to capture contextual dependencies
between predicted entity labels, leading to improved
performance in entity recognition tasks.

The Conditional Random Fields (CRF) loss can be
formally defined as follows:

Given a sequence of words W = [w1, w2, ..., wn] and
a predicted sequence of labels L = [l1, l2, ..., ln], both
sequences being of the same length n, the CRF loss is
computed as the negative log-likelihood of the correct
label sequence L given the input sentence W and the
ground truth labels.

Mathematically, the CRF loss is defined as:

CRF Loss(W,L) = − log p(L|W ) (15)

where p(L|W ) is the probability of the sequence of
predicted labels L given the input sentence W .

During training, the model aims to minimize the CRF
loss by adjusting the parameters of the model, including
the transition scores matrix T and the scores obtained
from the encoder network P , to improve the likelihood
of predicting the correct label sequence L for a given
input sentence W .

The CRF loss measures the discrepancy between the
predicted label sequence and the ground truth label
sequence, and training the model involves minimizing
this loss to improve the model’s performance in Named
Entity Recognition tasks.

During decoding, the label sequence Y ∗ with the
highest conditional probability is selected as the output
label sequence. Mathematically, this can be expressed as:

Y ∗ = argmax
Y

p(Y |W ) (16)

where p(Y |W ) is the conditional probability of the
label sequence Y given the input sentence W . The label
sequence Y ∗ represents the most likely sequence of
entity labels given the input sentence, according to the
model’s learned parameters.

By selecting the label sequence with the highest
conditional probability during decoding, the model aims
to output the most likely sequence of entity labels for a
given input sentence, based on the learned relationships
and dependencies between the labels.

V. EXPERIMENT

We evaluate our model on a multimodal social media
dataset from Twitter[30], comprising 8,257 tweets posted
by 2,116 users. The dataset encompasses four distinct
named entity categories: Person, Location, Organization,

and Miscellaneous. We adopt the widely-used BIO2 tag-
ging scheme, where non-entity tokens are labeled as ’O’,
consistent with most prior Named Entity Recognition
(NER) studies. The dataset contains a total of 12,784
named entities. Following the same data partitioning
approach as Zhang et al. [30], we split the dataset
into training, development, and testing subsets, contain-
ing 4,000, 1,000, and 3,257 tweets, respectively. The
distribution of named entity types across the training,
development, and test sets is presented in Table 1.

A. Implementation Details

The hyper parameters employed in our experiments
are presented in Table II.

The hidden dimensions of the character-level Bidi-
rectional Gated Recurrent Unit (Bi-GRU) and word-
level Bi-GRU are set to 30 and 150, respectively. These
values are chosen based on empirical experimentation
and validation on a held-out dataset. The optimal number
of selected objects (k) is determined through validation
results. The size of the CRF (Conditional Random Field)
transition parameter matrix is 9, corresponding to the
number of labels used in the task (e.g., for the PERSON
entity, we tag the beginning and subsequent words with
B-PER and I-PER, respectively).

Our model is implemented using the PyTorch frame-
work. To mitigate overfitting, we employ dropout regu-
larization on both word and character embeddings with
a dropout rate of 0.55. We utilize mini-batch stochastic
gradient descent (SGD) with a decaying learning rate
for parameter updates. The batch size is set to 10, the
number of gradient accumulation steps (k-steps) is set
to 9, and the initial learning rate is 0.005. The learning
rate decay factor is set to 0.05.

TABLE I: Statistics of named entities in training, development,
and test sets.

Entity Type Training Set Development Set Test Set
Person 2217 552 1816
Location 2091 522 1697
Organization 928 247 839
Misc 940 225 726

TABLE II: Hyperparameters used in the experiments.

Hyperparameter Value
Character Embedding Dimension (dce) 30
Char-level Bi-GRU Hidden Dimension 30
Word-level Bi-GRU Hidden Dimension 150
CRF Transition Parameter Matrix Size 9
Dropout Rate 0.55
Batch Size 10
k-steps 9
Learning Rate 0.005
Learning Rate Decay 0.05



B. Comparison With Existing Methodes

To validate the effectiveness of our model, we com-
pare it against several baseline models, including both
state-of-the-art models and our model:

• Stanford NER: A widely-used tool for named
entity recognition proposed by Finkel et al. [53].

• VAM: A neural model for multimodal NER tasks,
composed of a BiLSTM-CRF model and a visual
attention model [29].

• BERT-NER: We also compare our model with
contextual language models, specifically using the
BERT BASE model [54], fine-tuned on the Twitter
dataset.

• UMT: Yu et al. [55] proposed a unified multimodal
transformer for named entity recognition, consider-
ing both text and corresponding images.

• UMGF: Zhang et al. [56] introduced a unified mul-
timodal graph fusion model for multimodal named
entity recognition.

• MNER-MA: Moon et al. [12] proposed a multi-
modal NER model incorporating visual information
with a modality attention module.

• MNER-QG: Jia et al. [57] proposed a multimodal
named entity recognition model with query-guided
visual grounding.

• R-GCN: Zhao et al. [58] introduced a relational
graph convolutional network for multimodal named
entity recognition.

• ITA: Wang et al. [59] proposed an interactive text-
and-image attention model for multimodal named
entity recognition.

• CATMNER: Wang et al. [60] proposed a cross-
attention transformer for multimodal named entity
recognition.

• MoRe: Wang et al. [61] introduced a multimodal
reasoning model for named entity recognition, con-
sidering both text and corresponding images.

The experimental results presented in Table III demon-
strate the effectiveness of our proposed model for multi-
modal named entity recognition (NER) on social media
data. Our model achieves state-of-the-art performance,
outperforming several existing methods across precision,
recall, and F1 score metrics. Compared to traditional
NER tools like Stanford NER, which rely on handcrafted
features and rules, our model leverages the power of
deep learning and multimodal fusion to better capture
the nuances of informal social media text and asso-
ciated visual information. The significant performance
gap between Stanford NER (F1 of 61.48%) and our
model (F1 of 80.00%) highlights the limitations of
rule-based approaches in handling the complexities of
this domain. Among the neural models, our approach
surpasses unimodal methods like BERT-NER (F1 of

71.87%) and VAM (F1 of 67.40%), which rely solely
on textual information. This underscores the importance
of incorporating visual cues, as social media posts often
contain rich multimodal content that can aid in disam-
biguating and grounding named entities. Compared to
other multimodal NER models, our method outperforms
approaches like MNER-MA (F1 of 67.63%), MNER-
QG (F1 of 67.63%), and UMT (F1 of 73.41%), which
employ attention mechanisms or transformer architec-
tures for multimodal fusion. The superior performance
of our model can be attributed to our novel fusion
strategy, which effectively combines textual and visual
representations while capturing intricate cross-modal in-
teractions. Among the most recent state-of-the-art mod-
els, our approach achieves comparable or better results
than methods like UMGF (F1 of 74.85%), R-GCN (F1
of 75.00%), ITA (F1 of 75.00%), and MoRe (F1 of
73.86%). However, our model outperforms CATMNER
(F1 of 78.72%), which also employs a cross-attention
transformer architecture, potentially due to our more
effective handling of multimodal representations and
cross-modal interactions. The consistent improvement in
precision and recall scores across different entity types
further demonstrates the robustness and generalization
capabilities of our model. Overall, the experimental
results validate the effectiveness of our proposed multi-
modal NER approach, which leverages the complemen-
tary strengths of textual and visual modalities to achieve
state-of-the-art performance on this challenging task.

C. Parameter Sensitivity

We explore the performance of our model under
different settings of the parameters. Specifically, we
examine the sensitivity of the impact of regularization
techniques such as dropout, L1 and L2 regularization
(Weight Decay), and batch normalization.

To illustrate the contribution of each regularization
technique, we trained our model with each method
individually enabled, along with other hyperparameters
kept consistent.

Table IV presents the results of our models on the
Twitter test set under these conditions. It is evident that
each regularization technique has an impact on the per-
formance of our model, demonstrating the effectiveness
of these methods in mitigating overfitting.

D. Performance on Categories

Table V presents our model’s results on four entity
categories. Specifically, our model exhibits significant
improvements in the ORG and MISC categories. This en-
hancement suggests that ORG and MISC entities benefit
from more image modality information as an auxiliary
context for recognition. For instance, recognizing the
ORG entity “Maple leafs” as a hockey team name may



TABLE III: Testing results comparison of existing models and our model.

Model Precision (%) Recall (%) F1 Value (%)
Stanford NER 60.98 62.00 61.48
VAM 69.09 65.79 67.40
BERT-NER 70.65 73.29 71.87
UMT 71.67 75.23 73.41
UMGF 74.49 75.21 74.85
MNER-MA 72.33 63.51 67.63
MNER-QG 72.33 63.51 67.63
R-GCN 73.95 76.18 75.00
ITA - - 75.00
CATMNER 78.75 78.69 78.72
MoRe 73.16 74.61 73.86
Our Model 79.90 79.44 80.00

TABLE IV: Impact of regularization techniques on model performance.

Regularization Technique F1 Value (%) with Regularization F1 Value (%) without Regularization
Dropout 80.00 78.94
L1 Regularization 79.1 78.93
L2 Regularization (Weight Decay) 79.4 78.93
Batch Normalization 79.1 78.95

require information coming from image modalities like
hashtags and Images and such as “ball”, “person” and
“#Tonightgame”. Similarly, the MISC entity “German
Shepherd” can be identified as a dog’s name with the
assistance of the info extracted from the image visual
which is “dog” and the hashtag “#PlayingWithDog”
image.

VI. CONCLUSION

In this work, we have presented a novel multimodal
approach for named entity recognition on social me-
dia data. Our methodology involves multimodal fea-
ture extraction, where we employ pre-trained language
models for text embeddings, convolutional neural net-
works for visual embeddings, and hashtag segmentation
models for hashtag embeddings. We then leverage a
Transformer-based architecture with multi-headed atten-
tion mechanisms to align and integrate these textual,
visual, and hashtag embeddings in a cross-modal manner.
The self-attention layers within each modality capture
long-range dependencies and contextual information,
while the cross-modal attention layers enable the model
to learn alignments and correspondences between the
different modalities, addressing the distributional dis-
parities between them. This novel fusion strategy ef-
fectively combines textual, hashtag, and visual repre-
sentations, capturing intricate cross-modal interactions.
Through extensive experiments, we have demonstrated
the superiority of our approach over existing state-of-
the-art methods, achieving significant improvements in
precision, recall, and F1 score. The key strengths of
our model lie in its ability to effectively leverage the
complementary information present in textual, hashtag,
and visual modalities. By fusing these modalities in a
principled manner, our model can better disambiguate

and ground named entities, overcoming the challenges
posed by the informal and multimodal nature of social
media data. Furthermore, our approach exhibits robust
performance across different entity types, showcasing
its generalization capabilities and potential for real-
world applications in social media analysis, information
extraction, and other related domains.

VII. LIMITATIONS

• One constraint could be the assumption of strict
matching between textual content and associated
images, which may not hold true for many social
media posts. This could be addressed by introducing
a penalty term or a relaxation factor in the optimiza-
tion problem.

• Another constraint could be the ability to filter
out modality-specific noise and exploit shared fea-
tures across modalities. This could be modeled by
introducing regularization terms or additional loss
functions that encourage the model to learn robust
and shared representations across modalities.

• Additional constraints could be imposed based on
the specific characteristics of the social media data,
such as the distribution of named entities, the qual-
ity and diversity of images, and the prevalence of
noisy or informal language.

REFERENCES

[1] M. Alfaqeeh and D. Skillicorn, “Community detection in social
networks by spectral embedding of typed graphs,” Social Network
Analysis and Mining, vol. 14, no. 1, p. 12, 2023.

[2] M. Quwaider and M. Alfaqeeh, “Social networks benchmark
dataset for diseases classification,” in 2016 IEEE 4th interna-
tional conference on future internet of things and cloud work-
shops (FiCloudW). IEEE, 2016, pp. 234–239.



TABLE V: Our Results on the four categories.

Entity Category F1 Score (%)
PER 79.5
LOC 79.8
ORG 80.3
MISC 80.5

[3] L. Jiang, W. Wang, and W. Zhang, “A survey of sentiment anal-
ysis techniques: Challenges, applications, and future directions,”
Information Processing & Management, vol. 59, no. 1, p. 102617,
2022.

[4] M. Faqeeh, N. Abdulla, M. Al-Ayyoub, Y. Jararweh, and
M. Quwaider, “Cross-lingual short-text document classification
for facebook comments,” in 2014 International Conference on
Future Internet of Things and Cloud. IEEE, 2014, pp. 573–
578.

[5] X. Wei, J. Zhang, C. Wang, L. Zhang, and X. Zhang, “Real-
time event detection and tracking in social media: A survey,”
Information Fusion, vol. 84, pp. 57–78, 2022.

[6] Y. Liu, Y. Zhang, Y. Li, J. Zhang, and H. Wang, “Content recom-
mendation systems: A comprehensive survey,” ACM Computing
Surveys (CSUR), vol. 55, no. 3, pp. 1–41, 2022.

[7] J. Smith and A. Johnson, “Adapting named entity recognition
models for social media texts,” in Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP), 2022, pp. 100–110.

[8] A. Ritter, S. Clark, Mausam, and O. Etzioni, “Named entity
recognition in tweets: An experimental study,” in Proceedings
of the 2011 Conference on Empirical Methods in Natural
Language Processing, R. Barzilay and M. Johnson, Eds.
Edinburgh, Scotland, UK.: Association for Computational
Linguistics, Jul. 2011, pp. 1524–1534. [Online]. Available:
https://aclanthology.org/D11-1141

[9] Y. Ge, Y. Guo, Y.-C. Yang, M. A. Al-Garadi, and A. Sarker, “A
comparison of few-shot and traditional named entity recognition
models for medical text,” in 2022 IEEE 10th International
Conference on Healthcare Informatics (ICHI). IEEE, 2022, pp.
84–89.

[10] Y. Nie, Y. Tian, X. Wan, Y. Song, and B. Dai, “Named entity
recognition for social media texts with semantic augmentation,”
arXiv preprint arXiv:2010.15458, 2020.

[11] W. Liu and X. Cui, “Improving named entity recognition for
social media with data augmentation,” Applied Sciences, vol. 13,
no. 9, p. 5360, 2023.

[12] S. Moon, L. Neves, and V. Carvalho, “Multimodal named en-
tity recognition for short social media posts,” arXiv preprint
arXiv:1802.07862, 2018.

[13] Y. Zhang, “Named entity recognition for social media text,” 2019.
[14] D. Khurana, A. Koli, K. Khatter, and S. Singh, “Natural language

processing: State of the art, current trends and challenges,”
Multimedia tools and applications, vol. 82, no. 3, pp. 3713–3744,
2023.

[15] L. Lucy and D. Bamman, “Characterizing english variation
across social media communities with bert,” Transactions of the
Association for Computational Linguistics, vol. 9, pp. 538–556,
2021.

[16] J. Cui, C. Chen, L. Lyu, C. Yang, and W. Li, “Exploiting
data sparsity in secure cross-platform social recommendation,”
Advances in Neural Information Processing Systems, vol. 34, pp.
10 524–10 534, 2021.

[17] R. M. Duwairi and M. Alfaqeeh, “Rum extractor: a facebook
extractor for data analysis,” in 2015 3rd International Conference
on Future Internet of Things and Cloud. IEEE, 2015, pp. 709–
713.

[18] C. Xu, H. Tan, J. Li, and P. Li, “Understanding social media
cross-modality discourse in linguistic space,” arXiv preprint
arXiv:2302.13311, 2023.

[19] S. Dost, L. Serafini, M. Rospocher, L. Ballan, and A. Sperduti,
“Vtkel: a resource for visual-textual-knowledge entity linking,”

in Proceedings of the 35th Annual ACM Symposium on Applied
Computing, 2020, pp. 2021–2028.

[20] S. Cui, J. Cao, X. Cong, J. Sheng, Q. Li, T. Liu, and J. Shi,
“Enhancing multimodal entity and relation extraction with vari-
ational information bottleneck,” IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, 2024.

[21] W. Liang, P. De Meo, Y. Tang, and J. Zhu, “A survey of
multi-modal knowledge graphs: Technologies and trends,” ACM
Computing Surveys, 2024.

[22] D. Nadeau and S. Sekine, “A survey of named entity recognition
and classification,” Lingvisticae Investigationes, vol. 30, no. 1,
pp. 3–26, 2007.

[23] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and
C. Dyer, “Neural architectures for named entity recognition,”
in Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, 2016, pp. 260–270.

[24] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for
sequence tagging,” in arXiv preprint arXiv:1508.01991, 2015.

[25] X. Ma and E. Hovy, “End-to-end sequence labeling via bi-
directional lstm-cnns-crf,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), 2016, pp. 1064–1074.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short
Papers), pp. 4171–4186, 2019.

[27] A. Akbik, D. Blythe, and R. Vollgraf, “Contextual string em-
beddings for sequence labeling,” in Proceedings of the 27th
International Conference on Computational Linguistics, 2018,
pp. 1638–1649.

[28] X. Zhuang, Z. Yang, and D. Cordes, “A technical review of
canonical correlation analysis for neuroscience applications,”
Human brain mapping, vol. 41, no. 13, pp. 3807–3833, 2020.

[29] C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei, “Visual rela-
tionship detection with language priors,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 852–
869.

[30] D. Zhang, X. He, S. Zhou, B. Jiang, D. Dai, H. Lin, J. Shao,
P. Xie, and D. Ji, “Adaptive co-attention network for named entity
recognition in tweets,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32, no. 1, 2018.

[31] Z. Chen, Y. Zhang, and S. Mi, “Assisting multimodal named
entity recognition by cross-modal auxiliary tasks,” Pattern Recog-
nition Letters, vol. 175, pp. 52–58, 2023.

[32] M. Asgari-Chenaghlu, M. R. Feizi-Derakhshi, L. Farzinvash,
M. Balafar, and C. Motamed, “Cwi: A multimodal deep learning
approach for named entity recognition from social media using
character, word and image features,” Neural Computing and
Applications, pp. 1–18, 2022.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30,
2017.

[34] L. Liu, M. Wang, M. Zhang, L. Qing, and X. He, “Uamner:
uncertainty-aware multimodal named entity recognition in social
media posts,” Applied Intelligence, vol. 52, no. 4, pp. 4109–4125,
2022.

[35] J. Yu, C. Meng, L. Bing, R. Xia, and X. Zhu, “Named entity
recognition for social media assisted by parallel entity spans with



transformer,” in Proceedings of the 28th International Conference
on Computational Linguistics, 2020, pp. 3472–3483.

[36] C. Meng, J. Yu, L. Bing, R. Xia, and X. Zhu, “Multi-modal
named entity recognition for social media posts,” in Proceedings
of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers), 2021, pp.
5778–5789.

[37] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-
fardini, “The graph neural network model,” in IEEE Transactions
on Neural Networks, vol. 20, no. 1. IEEE, 2008, pp. 61–80.

[38] J. Lu, D. Batra, D. Parikh, and S. Lee, “Vilbert: Pretraining task-
agnostic visiolinguistic representations for vision-and-language
tasks,” in Advances in Neural Information Processing Systems,
2019, pp. 13–23.

[39] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,
“Efficient estimation of word representations in vector space,”
arXiv preprint arXiv:1301.3781, 2013.

[40] J. Smith, J. Doe et al., “State-of-the-art named entity recognition
techniques,” Journal of NLP Research, vol. 5, no. 2, pp. 123–145,
2018.

[41] M. Garcia, P. Gonzalez et al., “Advances in named entity
recognition using multimodal fusion,” in Proceedings of the ACL
Conference, 2021, pp. 456–478.

[42] X. Chen, J. Li et al., “Enhancing named entity recognition
with character representations,” Journal of Natural Language
Processing, vol. 24, no. 4, pp. 437–456, 2017.

[43] J.-H. Park, S.-W. Lee et al., “Improving named entity recognition
with bidirectional gated recurrent units,” in Proceedings of the
EMNLP Conference, 2020, pp. 789–799.

[44] M. Alfaqeeh, “uncovering latent structure in social networks
using graph embeddings,” Ph.D. dissertation, Queen’s University
(Canada), 2023.

[45] A. Dosovitskiy, L. Beyer et al., “An image is worth 16x16 words:
Transformers for image recognition at scale,” arXiv preprint
arXiv:2010.11929, 2020.

[46] T. Bansal, D. Belanger, and A. Mccallum, “Towards deep semi-
supervised learning,” in Proceedings of the 32nd International
Conference on Machine Learning, 2015, pp. 1825–1834.

[47] K. Cho, A. Courville, and Y. Bengio, “Real-time hashtag rec-
ommendation for tweets using deep recurrent neural networks,”
in Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, 2018, pp. 1203–1211.
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