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Abstract. To solve the optimal allocation problem with separable re-
source losses, this paper proposes a neurodynamic approach based on
multi-agent system. By using KKT condition, the nonlinear coupling
equality constraint in the original problem is equivalently transformed
into a convex coupling inequality constraint. Then, with the help of finite-
time tracking technology and fixed-time projection method, a neurody-
namic approach is designed and its convergence is strictly proved. Finally,
simulation results verify the effectiveness of the proposed neurodynamic
approach.
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1 Introduction

Solving optimal allocation problems plays a pivotal role in achieving optimal
resource utilization and load balancing. Rational allocation of resources holds
the potential to enhance the efficiency of extensive systems, including power
distribution networks [8], integrated energy system [16], and sensor network [20],
thereby reducing overall costs while ensuring equitable resource allocation among
nodes.

In general, the network equipped with n nodes is responsible for allocating a
certain amount of resources and achieving the objective of minimizing the over-
all production cost of the entire system. According to the actual situation, the
production cost incurred by each node is determined by its own device config-
uration and the local amount of resource allocation. Considering the resource
constraints, the optimal allocation problem can be mathematically formulated
as follows:

min

n∑
i=1

fi(xi)

s.t.
n∑

i=1

xi = D, xi ∈ Xi

(1)



2 L. Luan et al.

where xi ∈ R denotes the actual allocation of node i, fi : R → R is the production
cost function of node i, D ∈ R is the given amount of resources, and Xi is the
local constraints imposed on node i. Recently, as an optimized parallel computing
model, the brain-like nonlinear dynamic system in the recurrent neural network,
the so-called neurodynamic approach, has been known. With the help of the
parallel computing and information interaction ability of multi-agent systems,
which are not available in traditional optimization numerical methods, designing
distributed neurodynamic approaches based on multi-agent systems has become
a prevalent method for optimal allocation problems (1), such as [2, 3, 6, 10, 19].

In the optimal allocation problem (1), the equality constraint is related to the
resources of all nodes in the network, so it is actually a global constraint, which
is essentially different from local constraints. The coupling of global constraints
usually makes it difficult to design distributed neurodynamic approaches. For ex-
ample, the neurodynamic approaches which can effectively solve the distributed
optimization problem with only local constraints [1, 12] cannot be directly used
to solve the optimal allocation problem (1). Additionally, global inequality con-
straints often exist in practical applications, which makes it more challenging
to maintain the distributed manner of neurodynamic approaches. Some related
studies have been given in [11, 13].

Although the aforementioned results advance the technology of neurody-
namic approaches, there are few neurodynamic approaches that can deal with
resource losses. Resource loss usually destroys the convexity of coupling equality
constraint, which brings great difficulties to searching for the solution of resource
allocation problems. To handle this challenge, a neurodynamic approach is pro-
posed to solve the optimal allocation problem with separable resource losses by
combining projection operator and symbolic function in this paper. Compared
with the existing literature, the main contributions of this paper are as follows:

– In contrast to [2, 3, 6, 10, 11, 13, 8], the optimal allocation problems in this
paper take the resource losses into account. Thus, the discussed optimal
allocation problem is more general and challenging.

– The states of agents along the proposed neurodynamic approach finally reach
the exact optimal solution to the optimal allocation problem rather than
the optimal solution set (see [9, 18]), which ensures a better convergence
property.

2 Preliminaries and Problem Description

2.1 Preliminaries

Graph Theory. In the paper, the distributed neurodynamic approach is based
on the multi-agent system, and the system operation is closely related to the
communication network. The n agents in the system can be regarded as n nodes
on the network, and the communication network can be represented by the
topology graph G(V, E ,A), which is composed of node set V = {1, 2, · · · , n},
edge set E = {(i, j) ⊆ V × V : aij > 0}, and adjacency matrix A = [aij ]n×n. For



Distributed Neurodynamic Approach for Optimal Allocation 3

the multi-agent system, (i, j) ∈ E means that agent i and agent j can exchange
information. If the adjacency matrix A is symmetric, the graph G is said to be
undirected. An undirected graph G is said to be connected if there are links
between every two different nodes. More details can be found in [7].

Convex Analysis. A subset Ω ⊆ Rn is called a convex set if for any x ∈ Ω,
y ∈ Ω, and λ ∈ [0, 1], it has (1 − λ)x + λy ∈ Ω. For the convex set Ω, if
f((1 − λ)x + λy) ⩽ (1 − λ)f(x) + λf(y) holds for all x, y ∈ Ω and λ ∈ [0, 1],
then the function f : Ω → R is called a convex function. Furthermore, if there
is w > 0 such that f((1− λ)x+ λy) ⩽ (1− λ)f(x) + λf(y)− w

2 λ(1− λ)∥x− y∥2
holds for all x, y ∈ Ω and λ ∈ [0, 1], then the function f : Ω → R is called a
w-strongly convex function. For a point x outside the convex set Ω, the distance
from the projected point PΩ(x) to x is the minimum distance from x to Ω. Its
mathematical definition is as follows

PΩ(x) := argmin
y∈Ω

∥x− y∥.

The projection of x on a convex set Ω is unique and satisfies ⟨x − PΩ(x), y −
PΩ(x)⟩ ⩽ 0 for all y ∈ Ω.

2.2 Problem Description

In the field of power grid, there are usually various forms of losses. For example,
according to the operating conditions, the copper loss or core loss of the generator
can reach one-tenth of the power generation [4], which can not be ignored. In
addition, the transmission and distribution of power will also cause losses, which
will greatly reduce the overall efficiency. Following the symbol of the optimal
allocation problem (1), the optimal allocation problem with separable resource
losses is

min

n∑
i=1

fi(xi)

s.t.
n∑

i=1

xi = D + Ψ(x), xi ∈ Xi

(2)

where Ψ(x) =
∑n

i=1 Ψi(xi) is the separable resource losses, Xi = [xL
i , x

U
i ] is the

local box constraint for node i, which is defined with the lower bound xL
i and

the upper bound xU
i .

Assumption 1 The functions in the optimal allocation problem (2) are defined
as fi(xi) = αix

2
i + βixi + γi and Ψi(xi) = aix

2
i + bixi with αi > 0, βi > 0, and

ai > 0 for all i ∈ V := {1, 2, · · · , n}.

Assumption 2 For all i ∈ V, it holds 1− bi − 2aix
U
i > 0 and the total amount

D of resource satisfies
∑n

i=1(x
L
i − Ψi(x

L
i )) ⩽ D ⩽

∑n
i=1(x

U
i − Ψi(x

U
i )).
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Assumption 3 The communication graph G of the multi-agent system is undi-
rected and connected.

Remark 1. It should be noted that Assumption 1 implies the objective function
and loss function of the optimal allocation problem (2) are both strongly convex.
But the optimal allocation problem (2) is not necessarily a convex optimization
problem, because the equality constraint is not affine. Assumption 2 guarantees
that the feasible region of the optimal allocation problem (2) is nonempty and
1 − bi − 2aix

U
i > 0 follows 1 − dΨ(x)

dxi
> 0, which refers to the resource losses

cannot exceed total resource supply.

3 Main Results

3.1 Approach Description

In view of the nonlinearity of equality constraints, it is impossible to directly use
the related theory of convex optimization to solve the optimal solution of the
optimal allocation problem (2). Denote D =

∑n
i=1 di, the following conclusion

shows that solving the optimal allocation problem (2) can be transformed into
solving a convex optimization problem with global inequality constraints.

Theorem 1. Under Assumptions 1 and 2, the optimal solution of the following
problem

min F (x) =

n∑
i=1

fi(xi)

s.t.
n∑

i=1

(di + Ψi(xi)− xi) ⩽ 0, xi ∈ Xi

(3)

is the optimal solution of the optimal allocation problem (2).

Proof. Let x∗ = (x∗
1, x

∗
2, · · · , x∗

n)
T be the optimal solution of the problem (3),

then there are optimal Lagrange multipliers θ > 0, u∗ = (u∗
1, u

∗
2, · · · , u∗

n)
T, and

v∗ = (v∗1 , v
∗
2 , · · · , v∗n)T satisfying

∇fi(x
∗
i )− θ(1−∇Ψi(x

∗
i )) + u∗

i − v∗i = 0

θ

n∑
i=1

(di + Ψi(x
∗
i )− x∗

i ) = 0, θ > 0

n∑
i=1

(di + Ψi(x
∗
i )− x∗

i ) ⩽ 0

u∗
i (x

∗
i − xU

i ) = 0, u∗
i ⩾ 0, x∗

i − xU
i ⩽ 0

v∗i (x
L
i − x∗

i ) = 0, v∗i ⩾ 0, xL
i − x∗

i ⩽ 0

(4)

for all i ∈ V.
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Next, we prove that
∑n

i=1(di +Ψi(x
∗
i )− x∗

i ) = 0. Suppose that this equation
does not hold, then it implies θ = 0 and

∑n
i=1(di + Ψi(x

∗
i ) − x∗

i ) < 0 from (4).
According to Assumption 1, one has ∇fi(x

∗
i ) = 2αix

∗
i + βi > 0 for all i ∈ V.

Hence, for any i ∈ V,

v∗i = ∇fi(x
∗
i )− θ(1−∇Ψi(x

∗
i )) + u∗

i = ∇fi(x
∗
i ) + u∗

i > 0.

This reveals that x∗
i = xL

i and
∑n

i=1(di+Ψi(x
L
i )−xL

i ) =
∑n

i=1(di+Ψi(x
∗
i )−x∗

i ) <
0, which contradicts

∑n
i=1 x

L
i − Ψ(xL

i ) ⩽ D ⩽
∑n

i=1 x
U
i − Ψ(xU

i ) in Assumption
2. It can be obtained that D =

∑n
i=1 x

∗
i −Ψ(x∗), that is, x∗ is a feasible solution

of the problem (2). Combining with the definition of x∗, we get that x∗ is a
optimal solution of problem (2).

Based on the Lagrangian multiplier method, here comes a useful lemma.

Lemma 1. [17] Under Assumptions 1 and 2, x∗ = (x∗
1, x

∗
2, · · · , x∗

n)
T is an op-

timal solution to the problem (3) if and only if there exists x∗ ∈ Rn and y∗ ∈ R
such that

x∗ =PX (x∗ −∇F (x∗)−∇g(x∗)y∗)

y∗ =[y∗ + g(x∗)]+
(5)

where X = X1×· · ·×Xn, ∇F (x∗) = (∇f1(x
∗
1),∇f2(x

∗
2), · · · ,∇fn(x

∗
n))

T, ∇g(x∗) =
(∇g1(x

∗
1),∇g2(x

∗
2), · · · ,∇gn(x

∗
n))

T, and g(x∗) =
∑n

i=1 gi(x
∗
i ).

To tackle the convex optimization problem (3), we introduce a multi-agent
system composed with n agents to represent the n nodes in the network, and for
each agent i ∈ V, design the following neurodynamic approach

ẋi(t) = −xi(t) + PXi

(
xi(t)−∇fi(xi(t))−∇gi(xi(t))[yi(t) + zi(t)]

+
)

ẏi(t) = Ji(t) + |Ji(t)|sign(Ki(t))− sig(Ki(t))
µ − sig(Ki(t))

ν

żi(t) = k1
∑
j∈Ni

sign
(
zj(t)− zi(t)

)
+ n∇gi(xi(t))

Tẋi(t)

Ji(t) = k2
∑
j∈Ni

sign
(
yj(t)− yi(t)

)
− 1

2
yi(t) +

1

2
[yi(t) + zi(t)]

+

Ki(t) = [yi(t)]
+ − yi(t)

(6)

with initial values xi(0) ∈ Xi and zi(0) = ngi(xi(0)), where gi(xi) = di+Ψi(xi)−
xi, [s]+ = max{s, 0}, sig(s)µ = sign(s)|s|µ, and Ni is the neighbor set of agent i.
In the neurodynamic approach (6), control parameters k1 > 0, k2 > 0, 0 < µ < 1,
and ν > 1 are usually used to adjust its convergence rate.

Remark 2. It is worth noting that the existence of the solution of the neurody-
namic approach (6) has been discussed in [5] and [13]. Furthermore, although the
total number n of agents is needed in the neurodynamic approach (6), it can be
easily determined distributively by employing the finite-time tracking technique
introduced in [14].
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3.2 Convergence Analysis

In this section, the finite-time tracking technique and the fixed-time projec-
tion method constructed in the neurodynamic approach (6) are used to make
distributed estimates of the required global information, and the finite-time con-
sistency of the auxiliary variables and the convergence of the proposed neurody-
namic approach are discussed.

Lemma 2. Under Assumptions 1-3, starting from xi(0) ∈ Xi, there is T1 > 0
such that yi(t) ⩾ 0 and xi(t) is bounded.

Proof. Step 1. We prove that there is T1 such that yi(t) ⩾ 0 when t ⩾ T1.
Consider the following Lyapunov function V1(t) = (yi − [yi]

+)2. Clearly, the
derivative of V1 along the neurodynamic approach (6) is

V̇1 = 2(yi − [yi]
+)Tẏi

= 2(yi − [yi]
+)TJi(t)− 2|Ji(t)||yi − [yi]

+| − 2|yi − [yi]
+|1+µ − 2|yi − [yi]

+|1+ν

⩽ −2V
1+µ
2

1 − 2V
1+ν
2

1 .
(7)

Therefore, from Lemma 1 in [15], there is T1 ⩽ 2
2(1−µ)+

1
2(ν−1) such that yi(t) ⩾ 0

when t ⩾ T1.
Step 2. Let us show that xi(t) ∈ Xi for all t ⩾ 0. Denote pi(t) = PXi

(xi(t)−
∇fi(xi(t))−∇gi(xi(t))[yi(t) + zi(t)]

+), then pi(t) ∈ Xi. From (6), we have

xi(t) = e−txi(0) + (1− e−t)

∫ t

0

pi(s)
es

et − 1
ds.

Since
∫ t

0
es

et−1ds = 1, xi(0) ∈ Xi and Xi is convex set, it holds that xi(t) ∈ Xi,
for any t ⩾ 0 and i ∈ V. Hence, xi(t) is bounded from the boundedness of Xi.

According to the conclusion of Lemma 2, we assume that M satisfies ∥xi(t)∥ ⩽
M , and then the neurodynamic approach (6) is reduced as

ẋi(t) = −xi(t) + PXi

(
xi(t)−∇fi(xi(t))−∇gi(xi(t))[yi(t) + zi(t)]

+
)

ẏi(t) = k2
∑
j∈Ni

sign
(
yj(t)− yi(t)

)
− 1

2
yi(t) +

1

2
[yi(t) + zi(t)]

+

żi(t) = k1
∑
j∈Ni

sign
(
zj(t)− zi(t)

)
+ n∇gi(xi(t))

Tẋi(t)

(8)

when t ⩾ T1. Since ∇gi(xi) (i ∈ V) are bounded based on Assumption 1, there
is M1 > M such that n2∥∇gi(xi(t))

Tẋi(t)∥ ⩽ M1. Thus, from the Lemma 3.2 in
[13], if k1 > 2M1, then we have T2 > T1 satisfying zi(t) =

1
n

∑n
j=1 zj(t) ∀i ∈ V

when t ⩾ T2. From zi(0) = ngi(xi(0)), it follows that

zi(t) =

n∑
i=1

gi(xi(t))
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for all i ∈ V when t ⩾ T2. Thus, it is induced that zi(t) is bounded due to
the definition of gi in Assumption 1. Similarly, we can find M2 > 0 such that
∥ − 1

2yi(t) +
1
2 [yi(t) + zi(t)]

+∥ ⩽ 1
2∥zi∥ ⩽ M2 when t ⩾ T2, which implies that if

k2 > 2M2, there exists T3 > T2 holding

yi(t) =

n∑
j=1

yj(t)

for all i ∈ V when t ⩾ T3.
From Lemma 2 and the above discussion, one can get that the values of the

control parameters µ and ν in the neurodynamic approach (6) determine the
upper bound of the time for yi(t) greater than zero, and the difference of k1 and
k2 will also change the maximum time for zi(t) and yi(t) to reach consensus.
Therefore, the value of the control parameters will affect the convergence rate
of the neurodynamic approach (6) to some extent. In practical application, the
value of the control parameter is usually selected and adjusted according to the
parameter adjustment experience.

Theorem 2. Under Assumptions 1-3, starting from initial values xi(0) ∈ Xi

and zi(0) = ngi(xi(0)), if kl > 2Ml (l = 1, 2), then the trajectories xi(t) of
neurodynamic approach (6) asymptotically converges to the optimal solution to
the problem (2).

Proof. Let x = (x1, x2, · · · , xn)
T, y =

∑n
i=1 yi, and z =

∑n
i=1 zi, then when

t ⩾ T3, z(t) = g(x(t)) and the neurodynamic approach (8) can be rewritten as
ẋ(t) = −x(t) + PX

(
x(t)−∇F (x(t))−∇g(x(t))[y(t) + g(x(t))]+

)
ẏ(t) = −1

2
y(t) +

1

2
[y(t) + g(x(t))]+

(9)

Define Θ = {(x∗, y∗) ∈ Rn+1 : (x∗, y∗) satisfies (5)}, then according to Lemma
1, (x∗, y∗) ∈ Θ is the equilibrium point of neurodynamic approach (9), and x∗

is the optimal solution to the problem (3).
Letting h(x, y) = F (x)+ 1

2∥[y+ g(x)]+∥2, it is obvious that h(x, y) is convex
with respect to (x, y) ∈ Rn × R. For t ⩾ T3, consider a Lyapunov function

V (x, y) = h(x, y)−h(x∗, y∗)−(x−x∗, y−y∗)T∇h(x∗, y∗)+
1

2
∥x−x∗∥2+1

2
∥y−y∗∥2

with (x∗, y∗) ∈ Θ, then we have y∗ = [y∗ + g(x∗)]+ and V (x, y) ⩾ 1
2∥x −

x∗∥2 + 1
2∥y − y∗∥2. According to x∗ = PX (x∗ − ∇F (x∗) − ∇g(x∗)y∗), denote

ŷ = [y + g(x)]+ and ŷ∗ = [y∗ + g(x∗)]+, it gets

V̇ =−⟨∇F (x)+∇g(x)ŷ−∇F (x∗)−∇g(x∗)ŷ∗+x−x∗,

x−x∗+x∗−PX (x−∇F (x)−∇g(x)ŷ)⟩+1

2
⟨ŷ−y, ŷ+y−2y∗⟩

=− ⟨x− x∗,∇F (x)+∇g(x)ŷ−∇F (x∗)−∇g(x∗)ŷ∗⟩−∥x−x∗∥2

− ⟨∇F (x)+∇g(x)ŷ−∇F (x∗)−∇g(x∗)ŷ∗ +x−x∗

x∗ −PX (x−∇F (x)−∇g(x)ŷ)⟩− 1

2
∥ŷ−y∥2+⟨ŷ − y, ŷ − y∗⟩

(10)
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Since

∥x−x∗∥2 = ∥x−PX (x−∇F (x)−∇g(x)ŷ)+PX (x−∇F (x)−∇g(x)ŷ)−x∗∥2

= ∥x−PX (x−∇F (x)−∇g(x)ŷ)∥2+∥PX (x−∇F (x)−∇g(x)ŷ)−x∗∥2

+ 2⟨x−PX (x−∇F (x)−∇g(x)ŷ),PX (x−∇F (x)−∇g(x)ŷ)−x∗⟩,
(11)

then one holds

V̇ =− ⟨x− x∗,∇F (x)+∇g(x)ŷ−∇F (x∗)−∇g(x∗)ŷ∗⟩
− ∥x−PX (x−∇F (x)−∇g(x)ŷ)∥2−⟨x∗−PX (x−∇F (x)−∇g(x)ŷ),

PX (x−∇F (x)−∇g(x)ŷ)−x+∇F (x)+∇g(x)ŷ⟩
− ⟨PX (x−∇F (x)−∇g(x)ŷ)−x∗,∇F (x∗)+∇g(x∗)ŷ∗⟩.

(12)

From the property of projection operators and x∗ is the optimal solution to the
problem (3), we can get

⟨x∗−PX (x−∇F (x)−∇g(x)ŷ),PX (x−∇F (x)−∇g(x)ŷ)−x+∇F (x)+∇g(x)ŷ⟩ ⩾ 0.

Since F (x) and g(x) are convex, then ⟨∇F (x)−∇F (x∗), x−x∗⟩ ⩾ 0 and ⟨PX (x−
∇F (x)−∇g(x)ŷ)− x∗,∇F (x∗)+∇g(x∗)ŷ∗⟩ ⩾ 0. Thus,

⟨x− x∗,∇F (x)+∇g(x)ŷ −∇F (x∗)−∇g(x∗)ŷ∗⟩
⩾⟨x− x∗,∇g(x)ŷ −∇g(x∗)ŷ∗⟩
=⟨x− x∗,∇g(x)ŷ −∇g(x∗)y∗⟩.

(13)

Furthermore, from the definition of ŷ, it has y − ŷ = [y + g(x)]− − g(x). Due to
ŷ[y + g(x)]− = 0, ŷg(x∗) ⩽ 0, ŷ∗[y + g(x)]− ⩽ 0, and ŷ∗g(x∗) = 0, then

− ⟨x− x∗,∇g(x)ŷ −∇g(x∗)y∗⟩ − ⟨y − ŷ, ŷ − y∗⟩
=− (∇g(x)ŷ)T(x− x∗) + (∇g(x∗)y∗)T(x− x∗)

− ŷ([y + g(x)]− − g(x)) + ŷ∗([y + g(x)]− − g(x))

=− ŷ([y + g(x)]− − g(x) +∇g(x)T(x− x∗))

+ y∗([y + g(x)]− − g(x) +∇g(x∗)T(x− x∗)) ⩽ 0.

(14)

Therefore, by combining the above inequalities, it has

V̇ ⩽ −∥x− PX (x−∇F (x)−∇g(x)ŷ)∥2 − ∥ŷ − y∥2 = −∥ẋ∥2 − 2∥ẏ∥2 ⩽ 0. (15)

Next, we show that there is an increasing sequence {tk} such that

lim
k→∞

∥ẋ(tk)∥2 + 2∥ẏ(tk)∥2 = 0.

If not, there exists r > 0 satisfying lim inft→∞ ∥ẋ(tk)∥2 + 2∥ẏ(tk)∥2 = r, which
means that there is T > T3 such that ∥ẋ(tk)∥2 +2∥ẏ(tk)∥2 ⩾ r

2 for all t ⩾ T . As
a result, it can obtain that V̇ (x, y) ⩽ − r

2 , for all t ⩾ T . Integrating the formula,
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one can obtain that V (x(t), y(t)) ⩽ V (x(T ), y(T )) − r
2 (t − T ). Then we have

limt→∞ V (x(t), y(t)) = −∞. This contradicts the fact that V ⩾ 0. Thus, we
have

lim
k→∞

∥x(tk)− PX (x(tk)−∇F (x(tk))−∇g(x(tk))ŷ(tk))∥ = 0,

lim
k→∞

∥ŷ(tk)− y(tk)∥ = 0.

According to (15) and V (x, y) ⩾ 1
2∥x−x∗∥2+∥y−y∗∥2, it deduces that x(t) and

y(t) are bounded. In addition, from Lemma 1, there is a convergent subsequence
(still denoted) {tk}, and there are (x0, y0) ∈ Θ such that limk→∞ x(tk) = x0 and
limk→∞ y(tk) = y0. Letting x∗ = x0 and y∗ = y0, similar to above analysis, we
have

lim
t→∞

V (x(t), y(t)) = V (x∗, y∗) = 0,

which follows limt→∞ ∥x(t) − x∗∥ = 0 and limt→∞ ∥y(t) − y∗∥ = 0. Hence,
the trajectories xi(t) (i ∈ V) of the neurodynamic approach (6) asymptotically
converge to the optimal solution to the problem (3). According to Theorem 1,
the conclusion is obviously valid.

4 Simulation Studies

In this section, we display the effectiveness of the neurodynamic approach (6)
with a twelve-agent system for the optimal allocation problem (2). The commu-
nication network of the multi-agent system is an undirected connected graph.

Table 1. Variables of the optimal allocation problem (2).

agent i 1 2 3 4 5 6 7 8 9 10 11 12

αi 0.4 1.2 3.2 2.8 0.4 0.4 0.4 0 1.6 2.8 2.8 2
βi 0.3 1.8 0.3 0.3 0.3 0.3 0.6 0.6 0.9 0.9 0.6 0.9
γi 1.8 2.1 1 3.6 2.6 2.2 3 4 1 4 3.7 2
ai 0.1 0.24 0.07 0.06 0.8 0.14 0.02 0.11 0.08 0.2 0.04 0.06
bi -0.05 -0.05 -0.03 -0.01 -0.23 -0.12 -0.11 -0.07 -0.07 -0.1 -0.1 -0.2
xL
i 0 0 0 0 0 0 0 0 0 0 0 0

xU
i 1 1 1 2 2 2 3 3 3 4 4 4

To achieve the optimal allocation problem (2) with D = 5.5 and the pa-
rameters in Table 1 in this simulation, we apply the neurodynamic approach
(6) by taking k1 = 1500, k2 = 1250, µ = 0.5, and ν = 2. The trajectories of
xi(t) (i = 1, 2, · · · , 12) are shown in Fig. 1. Visibly, Fig. 1 illustrates that the
neurodynamic approach (6) ia able to get the optimal solution

x∗ = [0.85, 0, 0.13, 0.14, 0.42, 0.85, 0.76, 2.42, 0.09, 0.05, 0.11, 0.11]
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of the problem (3) and shows the convergence of the neurodynamic approach
(6). It can be seen from Fig. 2 that the states yi(t) and zi(t) reach consensus
within a finite time, which is consistent with the theoretical results in this paper.
Furthermore, Fig. 3(a) describes the evaluations of the total cost value, and
Fig. 3(b) shows that the global equation constraint of the problem (3) with
resource losses can be satisfied. To sum up, these numerical results verify that
the neurodynamic approach designed in this paper is effective for solving the
optimal allocation problem with resource losses.
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Fig. 1. The trajectories of xi(t) generated by neurodynamic approach (6).
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Fig. 2. The trajectories of yi(t) and zi(t) generated by neurodynamic approach (6).
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Fig. 3. The total cost and global constraint with resource losses in the optimal alloca-
tion problem (2).

5 Conclusion

In this paper, we investigated the distributed optimal allocation problem with
separable resource losses. Through applying finite-time tracking technology and
the properties of the projection operator, a distributed neurodynamic approach
based on multi-agent system was designed and analyzed. Moreover, we showed
that the states of the proposed neurodynamic approach can converge to the
optimal solution of the considered problem both theoretically and numerically.
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