EasyChair Preprint
 № 9117

Riemann Hypothesis on Grönwall's Function

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Riemann Hypothesis on Grönwall's Function

Frank Vega ${ }^{1 *}$
${ }^{1 *}$ Research Department, NataSquad, 10 rue de la Paix, Paris, 75002, France.

Corresponding author(s). E-mail(s): vega.frank@gmail.com;

Abstract

Grönwall's function \boldsymbol{G} is defined for all natural numbers $\boldsymbol{n}>\mathbf{1}$ by $\boldsymbol{G}(\boldsymbol{n})=\frac{\boldsymbol{\sigma}(\boldsymbol{n})}{n \cdot \log \log n}$ where $\boldsymbol{\sigma}(\boldsymbol{n})$ is the sum of the divisors of \boldsymbol{n} and \log is the natural logarithm. We require the properties of extremely abundant numbers, that is to say left to right maxima of $\boldsymbol{n} \mapsto \boldsymbol{G}(\boldsymbol{n})$. We also use the colossally abundant and hyper abundant numbers. There are several statements equivalent to the famous Riemann hypothesis. We state that the Riemann hypothesis is true if and only if there exist infinitely many pairs $\left(N, N^{\prime}\right)$ of consecutive colossally abundant numbers $N<N^{\prime}$ such that $\boldsymbol{G}(N)<G\left(N^{\prime}\right)$. Using this new criterion, we prove that the Riemann hypothesis is true.

Keywords: Riemann hypothesis, Extremely abundant numbers, Colossally abundant numbers, Hyper abundant numbers, Arithmetic functions

MSC Classification: 11M26, 11A25

1 Introduction

As usual $\sigma(n)$ is the sum-of-divisors function of n

$$
\sum_{d \mid n} d
$$

where $d \mid n$ means the integer d divides n. In 1997, Ramanujan's old notes were published where it was defined the generalized highly composite numbers, which include the superabundant and colossally abundant numbers [1]. A natural number n is called superabundant precisely when, for all natural
numbers $m<n$

$$
\frac{\sigma(m)}{m}<\frac{\sigma(n)}{n}
$$

A number n is said to be colossally abundant if, for some $\epsilon>0$,

$$
\frac{\sigma(n)}{n^{1+\epsilon}} \geq \frac{\sigma(m)}{m^{1+\epsilon}} \text { for } \quad(m>1)
$$

Every colossally abundant number is superabundant [2]. Let us call hyper abundant an integer n for which there exists $u>0$ such that

$$
\frac{\sigma(n)}{n \cdot(\log n)^{u}} \geq \frac{\sigma(m)}{m \cdot(\log m)^{u}} \quad \text { for } \quad(m>1)
$$

where \log is the natural logarithm. Every hyper abundant number is colossally abundant [3, pp. 255]. We have this property on natural logarithms:

Proposition 1 [4, Lemma 3.3 pp. 8]. Let $x \geq 11$. For $y>x$, we have

$$
\frac{\log \log y}{\log \log x}<\sqrt{\frac{y}{x}}
$$

In 1913, Grönwall studied the function $G(n)=\frac{\sigma(n)}{n \cdot \log \log n}$ for all natural numbers $n>1$, [5]. We have the Grönwall's Theorem:

Proposition 2

$$
\limsup _{n \rightarrow \infty} G(n)=e^{\gamma}
$$

where $\gamma \approx 0.57721$ is the Euler-Mascheroni constant [5].

Next, we have the following Robin's results:

Proposition 3 Let $3 \leq N<N^{\prime}$ be two consecutive colossally abundant numbers, then

$$
G(n) \leq \operatorname{Max}\left(G(N), G\left(N^{\prime}\right)\right)
$$

when satisfying $N<n<N^{\prime}$ [6, Proposition 1 pp. 192].

Proposition 4 There are infinitely many colossally abundant numbers N such that $G(N)>e^{\gamma}$ when the Riemann hypothesis is false [6, Proposition 1 pp. 204]. There exist infinitely many colossally abundant numbers N such that $G(N)<e^{\gamma}[6$, Theorem 1 pp. 188], [6, Proposition 1 pp. 204].

Proposition 5 Let $3 \leq N<N^{\prime}$ be two consecutive colossally abundant numbers, then there exists some $\epsilon>0$ such that [6, Proposition 1 pp. 192]

$$
\frac{\sigma(N)}{N^{1+\epsilon}}=\frac{\sigma\left(N^{\prime}\right)}{N^{\prime 1+\epsilon}} .
$$

There are champion numbers (i.e. left to right maxima) of the function $n \mapsto G(n):$

$$
G(m)<G(n)
$$

for all natural numbers $10080 \leq m<n$. A positive integer n is extremely abundant if either $n=10080$, or $n>10080$ is a champion number of the function $n \mapsto G(n)$. In 1859, Bernhard Riemann proposed his hypothesis [7]. Several analogues of the Riemann hypothesis have already been proved [7].

Proposition 6 The Riemann hypothesis is true if and only if there exist infinitely many extremely abundant numbers [8, Theorem 7 pp. 6].

We use the following property for the extremely abundant numbers:

Proposition 7 Let $N<N^{\prime}$ be two consecutive colossally abundant numbers and $n>10080$ is some extremely abundant number, then N^{\prime} is also extremely abundant when satisfying $N<n<N^{\prime}$ [8, Lemma 21 pp. 12].

This is our main theorem

Theorem 1 The Riemann hypothesis is true if and only if there exist infinitely many pairs (N, N^{\prime}) of consecutive colossally abundant numbers $N<N^{\prime}$ such that $G(N)<G\left(N^{\prime}\right)$.

Putting all together yields a new criterion for the Riemann hypothesis. Now, we can conclude with the following result:

Theorem 2 The Riemann hypothesis is true.

Proof We consider two large enough consecutive colossally abundant numbers $N<$ N^{\prime}. There exists some $\epsilon>0$ such that

$$
\frac{\sigma(N)}{N^{1+\epsilon}}=\frac{\sigma\left(N^{\prime}\right)}{N^{\prime 1+\epsilon}}
$$

by Proposition 5. Then, we would have

$$
\left(\frac{N^{\prime}}{N}\right)^{\epsilon} \cdot \frac{\log \log N}{\log \log N^{\prime}}=\frac{G\left(N^{\prime}\right)}{G(N)}
$$

Hence, we only need to prove that

$$
\left(\frac{N^{\prime}}{N}\right)^{\epsilon} \cdot \frac{\log \log N}{\log \log N^{\prime}}>1
$$

which is exactly

$$
\frac{\log \log N}{\log \log N^{\prime}}>\left(\frac{N}{N^{\prime}}\right)^{\epsilon}
$$

A Millennium Prize Problem

By Proposition 1, we have

$$
\frac{\log \log N}{\log \log N^{\prime}}>\sqrt{\frac{N}{N^{\prime}}}
$$

since $11 \leq N<N^{\prime}$. Hence, it is enough to show that

$$
\sqrt{\frac{N}{N^{\prime}}} \geq\left(\frac{N}{N^{\prime}}\right)^{\epsilon}
$$

which is

$$
1 \geq \sqrt{\frac{N^{\prime}}{N}} \cdot\left(\frac{N}{N^{\prime}}\right)^{\epsilon}
$$

That would be

$$
\frac{\sigma(N)}{\sqrt{N}} \geq \frac{\sigma\left(N^{\prime}\right)}{\sqrt{N^{\prime}}}
$$

Let's assume that N is a hyper abundant number with a parameter $u>0$. This is possible since every hyper abundant number is colossally abundant [3, pp. 255]. In this way, we obtain that

$$
\frac{\sigma(N)}{\sqrt{N} \cdot \sqrt{N^{\prime}} \cdot\left(\log N^{\prime}\right)^{u}} \geq \frac{\sigma\left(N^{\prime}\right)}{N^{\prime} \cdot\left(\log N^{\prime}\right)^{u}}
$$

That would be

$$
\frac{\sigma(N)}{N \cdot(\log N)^{u}} \geq \frac{\sigma\left(N^{\prime}\right)}{N^{\prime} \cdot\left(\log N^{\prime}\right)^{u}}
$$

since $N<N^{\prime}$. However, we know that

$$
\frac{\sigma(N)}{N \cdot(\log N)^{u}} \geq \frac{\sigma\left(N^{\prime}\right)}{N^{\prime} \cdot\left(\log N^{\prime}\right)^{u}}
$$

by definition of hyper abundant numbers. Now, the proof is done. Note also that, for all $u>0$ [3, pp. 254]:

$$
\lim _{n \rightarrow \infty} \frac{\sigma(n)}{n \cdot(\log n)^{u}}=0
$$

and so, there are infinitely many hyper abundant numbers. In this way, there are infinitely many pairs $\left(N, N^{\prime}\right)$ of consecutive colossally abundant numbers $N<N^{\prime}$ such that $G(N)<G\left(N^{\prime}\right)$. Finally, the proof is complete by Theorem 1.

2 Proof of Theorem 1

Proof Suppose there are not infinitely many pairs (N, N^{\prime}) of consecutive colossally abundant numbers $N<N^{\prime}$ such that $G(N)<G\left(N^{\prime}\right)$. This implies that the inequality $G(N) \geq G\left(N^{\prime}\right)$ always holds for a sufficiently large N when $N<N^{\prime}$ is a pair of consecutive colossally abundant numbers. That would mean the existence of a single colossally abundant number $N^{\prime \prime} \geq 10080$ such that $G(n) \leq G\left(N^{\prime \prime}\right)$ for all natural numbers $n>N^{\prime \prime}$ according to Proposition 3. Certainly, the existence of such single colossally abundant number $N^{\prime \prime}$ is because of the Grönwall's function G would become decreasing on colossally abundant numbers starting from some single value. We use the Proposition 7 to reveal that under these preconditions, then there are not infinitely many extremely abundant numbers. This implies that the Riemann hypothesis is false as a consequence of Proposition 6. By contraposition, if the Riemann hypothesis is true, then there exist infinitely many pairs (N, N^{\prime}) of consecutive colossally abundant numbers $N<N^{\prime}$ such that $G(N)<G\left(N^{\prime}\right)$.

A Millennium Prize Problem

Suppose that there exist infinitely many pairs (N, N^{\prime}) of consecutive colossally abundant numbers $N<N^{\prime}$ such that $G(N)<G\left(N^{\prime}\right)$. On the one hand, let's assume from these infinitely many pairs $\left(N, N^{\prime}\right)$ of consecutive colossally abundant numbers $N<N^{\prime}$ such that $G(N)<G\left(N^{\prime}\right)$, then there could be only a finite amount of these N^{\prime} such that $e^{\gamma}<G\left(N^{\prime}\right)$. Thus, we deduce there could be only a finite amount of colossally abundant numbers $N^{\prime \prime}$ such that $e^{\gamma}<G\left(N^{\prime \prime}\right)$. However, when the Riemann hypothesis is false, then there are infinitely many colossally abundant numbers $N^{\prime \prime}$ such that $e^{\gamma}<G\left(N^{\prime \prime}\right)$ by Proposition 4. On the other hand, let's assume from these infinitely many pairs $\left(N, N^{\prime}\right)$ of consecutive colossally abundant numbers $N<N^{\prime}$ such that $G(N)<G\left(N^{\prime}\right)$, then there could be an infinite amount of these N^{\prime} such that $e^{\gamma}<G\left(N^{\prime}\right)$.

Based on this opposite assumption, it could appear the possible scenarios:

- there would be an infinite increasing subsequence of colossally abundant numbers N_{i} such that $e^{\gamma}<G\left(N_{i}\right)$ and $G\left(N_{i}\right)<G\left(N_{i+1}\right)$,
- or there would be a colossally abundant number $N^{\prime \prime}$ such that for all colossally abundant numbers $N>N^{\prime \prime}$ we have $e^{\gamma} \leq G(N)$,
- or there would be infinitely many pairs $\left(N, N^{\prime}\right)$ of consecutive colossally abundant numbers $N<N^{\prime}$ such that $G(N)<e^{\gamma}<G\left(N^{\prime}\right)$.

However, it cannot exist an infinite increasing subsequence of colossally abundant numbers N_{i} such that $e^{\gamma}<G\left(N_{i}\right)$ and $G\left(N_{i}\right)<G\left(N_{i+1}\right)$, by Proposition 2 and the properties of limit superior. Moreover, there cannot be a colossally abundant number $N^{\prime \prime}$ such that for all colossally abundant numbers $N>N^{\prime \prime}$ we have $e^{\gamma} \leq G(N)$, since this implies that there are not infinitely many colossally abundant numbers $N^{\prime \prime \prime}$ such that $G\left(N^{\prime \prime \prime}\right)<e^{\gamma}$ which is a contradiction by Proposition 4.

Furthermore, there are not infinitely many pairs (N, N^{\prime}) of consecutive colossally abundant numbers $N<N^{\prime}$ such that $G(N)<e^{\gamma}<G\left(N^{\prime}\right)$, because there exists some $\epsilon>0$ such that $\frac{\sigma(N)}{N^{1+\epsilon}}=\frac{\sigma\left(N^{\prime}\right)}{N^{1+\epsilon}}$ by Proposition 5. Certainly, we deduce that

$$
\begin{aligned}
\frac{G\left(N^{\prime}\right)}{N^{\prime \epsilon}} & =\frac{\sigma\left(N^{\prime}\right)}{N^{\prime 1+\epsilon} \cdot \log \log N^{\prime}} \\
& =\frac{\sigma(N)}{N^{1+\epsilon} \cdot \log \log N^{\prime}} \\
& <\frac{\sigma(N)}{N^{1+\epsilon} \cdot \log \log N} \\
& =\frac{G(N)}{N^{\epsilon}} \\
& <\frac{e^{\gamma}}{N^{\epsilon}} .
\end{aligned}
$$

Finally, we obtain as contradiction that $G\left(N^{\prime}\right)<e^{\gamma} \leq e^{\gamma} \cdot\left(\frac{N^{\prime}}{N}\right)^{\epsilon}$ under our assumption that $G(N)<e^{\gamma}<G\left(N^{\prime}\right)$ since $\left(\frac{N^{\prime}}{N}\right)^{\epsilon}=\frac{\left(\frac{\sigma\left(N^{\prime}\right)}{N^{\prime}}\right)}{\left(\frac{\sigma(N)}{N}\right)} \geq 1$ holds due to every colossally abundant number is superabundant. Therefore, the Riemann hypothesis would be true when there exist infinitely many pairs $\left(N, N^{\prime}\right)$ of consecutive colossally abundant numbers $N<N^{\prime}$ such that $G(N)<G\left(N^{\prime}\right)$.

3 Conclusions

Practical uses of the Riemann hypothesis include many propositions that are known to be true under the Riemann hypothesis and some that can be shown to be equivalent to the Riemann hypothesis. Indeed, the Riemann hypothesis is closely related to various mathematical topics such as the distribution of primes, the growth of arithmetic functions, the Lindelöf hypothesis, the Large Prime Gap Conjecture, etc. Certainly, a proof of the Riemann hypothesis could spur considerable advances in many mathematical areas, such as number theory and pure mathematics in general.

References

[1] J.L. Nicolas, G. Robin, Highly Composite Numbers by Srinivasa Ramanujan. The Ramanujan Journal 1(2), 119-153 (1997). https://doi.org/10. 1023/A:1009764017495
[2] L. Alaoglu, P. Erdős, On Highly Composite and Similar Numbers. Transactions of the American Mathematical Society 56(3), 448-469 (1944). https://doi.org/10.2307/1990319
[3] J.L. Nicolas, Some Open Questions. The Ramanujan Journal 9(1), 251-264 (2005). https://doi.org/10.1007/s11139-005-0836-2
[4] S. Nazardonyavi, S. Yakubovich, Superabundant numbers, their subsequences and the Riemann hypothesis. arXiv preprint arXiv:1211.2147v3 (2013). Accessed at arXiv: https://arxiv.org/pdf/1211.2147v3.pdf
[5] T.H. Grönwall, Some Asymptotic Expressions in the Theory of Numbers. Transactions of the American Mathematical Society 14(1), 113-122 (1913). https://doi.org/10.2307/1988773
[6] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. pures appl 63(2), 187-213 (1984)
[7] J.B. Conrey, The Riemann Hypothesis. Notices of the AMS 50(3), 341-353 (2003)
[8] S. Nazardonyavi, S.B. Yakubovich, Extremely Abundant Numbers and the Riemann Hypothesis. J. Integer Seq. 17(2), 14-2 (2014)

