
EasyChair Preprint
№ 3191

A Knuth-Bendix-Like Ordering for Orienting
Combinator Equations (Technical Report)

Ahmed Bhayat and Giles Reger

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 18, 2020

A Knuth-Bendix-Like Ordering for Orienting
Combinator Equations (Technical Report)

Ahmed Bhayat[0000−0002−1343−5084] and Giles Reger[0000−0001−6353−952X]

University of Manchester, Manchester, UK

Abstract. We extend the graceful higher-order basic Knuth-Bendix order (KBO)
of Becker et al. to an ordering that orients combinator equations left-to-right. The
resultant ordering is highly suited to parameterising the first-order superposition
calculus when dealing with the theory of higher-order logic, as it prevents infer-
ences between the combinator axioms. We prove a number of desirable proper-
ties about the ordering including it having the subterm property for ground terms,
being transitive and being well-founded. The ordering fails to be a reduction or-
dering as it lacks compatibility with certain contexts. We provide an intuition of
why this need not be an obstacle when using it to parameterise superposition.

1 Introduction

There exists a wide range of methods for automated theorem proving in higher-order
logic. Some provers such as AgsyHOL [16], Satallax [9] and Leo-II [4] implement ded-
icated higher-order proof calculi. A common approach, followed by the Leo-III prover
[20], is to use a co-operative architecture with a dedicated higher-order prover working
in conjunction with a first-order prover. It has long been part of theorem proving folk-
lore that sound and complete translations from higher-order to first-order logic exist.
Kerber [14] proves this result for a higher-order logic that does not assume compre-
hension axioms (otherwise known as applicative first-order logic). Thus, translating
higher-order problems to first-order logic and running first-order provers on the transla-
tions is another method of automated higher-order theorem proving. Variations of this
method are widely utilised by interactive theorem provers and their hammers such as
Sledgehammer [17] and the CoqHammer [10].

Almost all translations to first-order logic translate λ-expressions using combina-
tors. It is well known that the set of combinators S,K and I is sufficient to translate any
λ-expression. For purposes of completeness, these combinators must be axiomatised:
S〈τ1, τ2, τ3〉x y z = x z (y z), K〈τ1, τ2〉x y = x and I〈τ〉x = x. If translating to a
monomorphic logic a finite set of axioms cannot achieve completeness.

However, till now, translation based methods have proven disappointing and only
achieved decent results with interactive theorem provers when the problems are first-
order or nearly first-order [21]. One major reason for this is that inferences between
combinator axioms can be hugely explosive. A common first-order proof calculus is
superposition [18]. Consider a superposition inference from the K axiom onto the right-
hand of the S axiom. The result is SK y z = z. There is little to restrict such inferences.

Superposition is parameterised by a simplification ordering and inferences are only
carried out on the larger side of literals with respect to this ordering. Inferences are

not carried out at variables. Consider the S-, K- and I-axioms given above. There can
clearly be no unifiers between a subterm of the left side of one axiom and the left side
of another except at a variable. Thus, if a simplification ordering exists that orients the
axioms left-to-right, inferences amongst the axioms would be impossible.

Currently, no such simplification ordering is known to exist and the authors suspect
that no such ordering can exist. Whilst there is a large body of work on higher-order
orderings, all either lack some property required for them to be simplifcation order-
ings or are unsuitable for orienting the combinator axioms. Jouannaud and Rubio intro-
duced a higher-order version of the recursive path order called HORPO [13]. HORPO
is compatible with β-reduction which suggests that without much difficulty it could be
modified to be compatible with weak reduction. However, the ordering does not enjoy
the subterm property, nor is it transitive. Likewise, is the case for orderings based on
HORPO such as the computability path ordering [7] and the iterative HOIPO of Kop
and Van Raamsdonk [15]. More recently, a pair of orderings for λ-free higher-order
terms have been developed[2][6]. These orderings lack a specific monotonicity prop-
erty, but this does not prevent their use in superposition [3]. However, neither ordering
orients combinator axioms directly.

We investigate an extension of the graceful higher-order basic KBO >hb introduced
by Becker et al. [2]. Our new ordering, >ski, orients combinator equations left-to-right.
Thus, if it is used to parameterise a superposition calculus, there can be no inferences
among the axioms. The >ski ordering lacks full compatibility with contexts which is
normally a requirement for an ordering to parameterise superposition. In particular, the
ordering is not compatible with the so-called unstable contexts. In an as yet unpublished
paper, we show that this is not an obstacle to achieving completeness [5].

A complete superposition calculus for HOL already exists [3]. This calculus has the
λ-calculus rather than combinatory logic as its underlying logic. It also employs higher-
order unification. There appear to be two potential benefits to using a slightly modified
first-order superposition calculus parameterised by our new ordering >ski over lambda
superposition as developed in [3].

• A superposition calculus parameterised by >ski is far closer to standard first-order
superposition than lambda superposition. Unification is first-order and there is no
need to deal with binders and bound variables. This allows the re-use of the well-
studied data-structures and algorithms used in first-order superposition [11][19].
• As discussed further in the conclusion (Section 7), the >ski ordering allows the

comparison of a larger class of non-ground terms than the ordering used in [3].
This results in fewer superposition inferences.

In Section 2, we provide the necessary preliminaries and then move on to the main
contributions of this paper which are:

• Two approaches extending the >hb ordering by first comparing terms by the length
of the longest weak reduction from them. The approaches differ in the manner
they compare non-ground terms. A useful trait for an ordering that parameterises
superposition is to be able to compare a large class of non-ground terms since
this reduces the number of inferences carried out. The most powerful method of
defining a non-ground ordering � is to semantically lift a ground ordering, i.e., to

define t � s to hold iff tθ � sθ for all grounding substitutions θ. Such an ordering
in non-computable and both our methods attempt to approximate it (Section 3).

• A set of proofs that the introduced >ski ordering enjoys the necessary properties re-
quired for its use within the superposition calculus (Section 4) and a set of examples
demonstrating how the ordering applies to certain terms (Section 5).

• An extension of the previous idea to λ-terms (those containing λ-abstractions) with
β-reduction replacing weak reduction (Section 6).

2 Preliminaries

Syntax of types and terms: we work in a polymorphic applicative first-order logic. Let
Vty be a set of type variables andΣty be a set of type constructors with fixed arities. It is
assumed that a binary type constructor→ is present in Σty which is written infix. The
set of types is defined:

Polymorphic Types τ ::= κ(τn) |α | τ → τ where α ∈ Vty and κ ∈ Σty

The notation tn is used to denote a tuple or list of types or terms depending on the
context. A type declaration is of the formΠ α .σ where σ is a type and all type variables
in σ appear in α . LetΣ be a set of typed function symbols and V a set of variables with
associated types. It is assumed that Σ contains the following function symbols, known
as basic combinators:

S : Πατγ.(α→ τ → γ)→ (α→ τ)→ α→ γ I : Πα.α→ α
C : Πατγ.(α→ τ → γ)→ τ → α→ γ K : Παγ.α→ γ → α
B : Πατγ.(α→ γ)→ (τ → α)→ τ → γ

The set of terms over Σ and V is defined below. In what follows, type subscripts, and
at times even type arguments, are omitted.

Terms T ::= x | f〈 τn 〉 | t1τ1→τ2t2τ1
where x ∈ V , t1, t2 ∈ T , f ∈ Σ, f : Π αn .σ and τn are types

The type of the term f〈 τn 〉 is σ{αn → τn }. Following [2], terms of the form t1 t2
are called applications. Non-application terms are called heads. A term can uniquely
be decomposed into a head and n arguments. Let t = ζ t′n . Then head(t) = ζ where
ζ could be a variable or constant applied to possibly zero type arguments. The symbol
Cany denotes a member of {S,C,B,K, I}, whilst C3 denotes a member of {S,C,B}.
These symbols are only used when the combinator is assumed to have a full complement
of arguments. Thus, in C3 tn , n ≥ 3 is assumed. The symbols x, y, z . . . are reserved for
variables, c, d, f . . . for non-combinator constants and ζ, ξ range over arbitrary symbols
and, by an abuse of notation, at times even terms. A term is ground if it contains no
variables and term ground if it contains no term variables.

Positions over terms: for a term t, if t ∈ V or t = f〈 τ 〉, then pos(t) = {ε} (type
arguments have no position). If t = t1t2 then pos(t) = {ε} ∪ {i.p | 1 ≤ i ≤ 2, p ∈
pos(ti)}. Subterms at positions of the form p.1 are called prefix subterms and subterms

at positions of the form p.2 are known as first-order subterms. A position p is strictly
above a position p′ (denoted p < p′) if ∃p′′.p′′ 6= ε ∧ p′ = p.p′′. Positions p and
p′ are incomparable (denoted p ‖ p′) if neither p < p′ nor p′ < p, nor p = p′. By |t|,
the number of symbols occurring in t is denoted. By vars#(t) the multiset of variables
in t is denoted. The expression A ⊆ B means that either A is a subset of B or A is a
submultiset of B depending on whether A and B are sets or multisets.

Stable subterms: we define a subset of first-order subterms called stable subterms.
Let LPP(t, p) (LPP stands for Longest Proper Prefix) be a partial function that takes a
term t and a position p and returns the longest proper prefix p′ of p such that head(t|p′)
is not a partially applied combinator if such a position exists. For a position p ∈ pos(t),
p is a stable position in t if LPP(t, p) is not defined or head(t|LPP(t,p)) is not a combi-
nator. A stable subterm is a subterm occurring at a stable position and is denoted t〈〈u〉〉p.
We call t〈〈〉〉p a stable context and drop the position where it is not relevant. For example,
the subterm a is not stable in f (S a b c), S (S a) b c (in both cases, head(t|LPP(t,p)) = S)
and a c (a is not a first-order subterm), but is in g a b and f (S a) b. A subterm that is not
stable is known as an unstable subterm.

The notation t[u]p denotes an arbitrary subterm u of t that occurs at position p
and may be unstable. The notation t[u1, . . . , un] (or t[un]) denotes the term t con-
taining n non-overlapping subterms u1 to un. By u[]n, we refer to a context with n
non-overlapping holes. Whilst this resembles the notation for a term at position n, am-
biguity is avoided by never using n to denote a position or p to denote a natural number.

Weak reduction: each combinator is defined by its characteristic equation; Sx y z =
x z (y z), Cx y z = x z y, Bx y z = x (y z), Kx y = x and Ix = x. A term t weak-
reduces to a term t′ in one step (denoted t −→w t′) if t = u[s]p and there exists a
combinator axiom l = r and substitution σ such that lσ = s and t′ = u[rσ]p. The term
lσ in t is called a weak redex or just redex. By −→∗w, the reflexive transitive closure
of −→w is denoted. If term t weak-reduces to term t′ in n steps, we write t −→n

w t′.
Further, if there exists a weak-reduction path from a term t of length n, we say that
t ∈ nw. Weak-reduction is terminating and confluent as proved in [12]. By (t) ↓w, we
denote the term formed from t by contracting its leftmost redex.

The length of the longest weak reduction from a term t is denoted ‖t‖. This measure
is one of the crucial features of the ordering investigated in this paper.

2.1 A Maximal Weak-reduction Strategy

To show that the measure ‖‖ is computable we provide a maximal weak-reduction strat-
egy and prove its maximality. The strategy is used in a number of proofs later in the
paper. It is in a sense equivalent to Barendregt’s ‘perpetual strategy’ in the λ-calculus
[1]. Our proof of its maximality follows the style of Van Raamsdonk et al. [22] in their
proof of the maximality of a particular β-reduction strategy. We begin by proving the
fundamental lemma of maximality for combinatory terms.

Lemma 1 (Fundamental Lemma of Maximality). ‖Cany tn ‖ = ‖(Cany tn) ↓w ‖ +
1+ isK(Cany)×‖t2‖ where isK(Cany) = 1 if Cany = K and is 0 otherwise. The lemma
holds for n ≥ 3 if Cany ∈ {S,C,B}, n ≥ 2 if Cany = K and n ≥ 1 otherwise.

Proof. Assume that Cany = K. Then any maximal reduction from K tn is of the form:

K t1 t2 . . . tn −→m
w K t′1 t

′
2 . . . t

′
n

−→w t′1 t
′
3 . . . t

′
n

−→m′

w s

where ‖s‖ = 0, t1 −→m1
w t′1 . . . tn −→mn

w t′n, ‖t2‖ = m2 and m = m1 + · · · +mn.
Thus, ‖K tn ‖ =

∑n
i=1mi + 1 +m′. There is another method of reducing K tn to s:

K t1 t2 . . . tn −→m2
w K t1 t

′
2 . . . tn

−→w t1 t3 . . . tn

−→m−m2
w t′1 t

′
3 . . . t

′
n

−→m′

w s

As the length of this reduction is the same as the previous reduction, it must be a
maximal reduction as well. Therefore we have that:

‖K t1 t2 . . . tn‖ = m+m′ + 1

= (m−m2 +m′) +m2 + 1

= ‖t1 t3 . . . tn‖+ ‖t2‖+ 1

Conversely, assume that Cany is not K. We prove that the formula holds if Cany = S.
The other cases are similar. If Cany = S, any maximal reduction from S tn must be of
the form:

S t1 . . . tn −→m
w S t′1 . . . t

′
n

−→w t′1 t
′
3 (t
′
2 t
′
3) t
′
4 . . . t

′
n

−→m′

w s

where ‖s‖ = 0, t1 −→m1
w t′1 . . . tn −→mn

w t′n and m = m1 + · · · + mn. There is
another method of reducing S tn to s:

S t1 . . . tn −→w t1 t3 (t2 t3) t4 . . . tn

−→m+m3
w t′1 t

′
3 (t
′
2 t
′
3) t
′
4 . . . tn

−→m′

w s

Thus, we have that ‖S tn ‖ = m+m′+1 ≤ m+m3+m
′+1 = ‖(S tn)↓w ‖+1.

Since m+m′ + 1 is the length of the maximal reduction, equality must hold.

Lemma 2. Define a map F∞ from T to T as follows:

F∞(t) = t if ‖t‖ = 0

F∞(ζ tn) = ζ t1 . . . ti−1 F∞(ti) ti+1 . . . tn

where ‖tj‖ = 0 for 1 ≤ j < i

and ζ is not a fully applied combinator

F∞(C3 tn) = (C3 tn)↓w

F∞(I t1 t2 . . . tn) = t1 t2 . . . tn

F∞(K t1 t2 . . . tn) =

{
t1 t3 . . . tn if ‖t2‖ = 0

K t1 F∞(t2) . . . tn otherwise

The reduction strategy F∞ is maximal.

Proof. By utilising Lemma 2.14 of [22], we have that F∞ is maximal iff for all m ≥ 1
and all t, t ∈ mw =⇒ F∞(t) ∈ (m− 1)w. We proceed by induction on t.

If t = f〈 τ 〉 s′ u sn or t = x s′ u sn where all members of s′ are in normal
form, ‖u‖ > 0, u ∈ m0

w, s1 ∈ m1
w . . . sn ∈ mn

w and m = m0 + · · · + mn, then
F∞(t) = ζ s′ F∞(u) sn . By the induction hypothesis F∞(u) ∈ (m0 − 1)w. Thus,
F∞(t) = ζ s′ F∞(u) sn ∈ (m− 1)w.

If t = Cany tn , the proof splits into two:

Cany 6= K or ‖t1‖ = 0 Then F∞(t) = (Cany tn) ↓w. By the fundamental lemma of
maximality, we have ‖(Cany tn)↓w ‖+ 1 = ‖Cany tn ‖ ≥ m. Thus ‖(Cany tn)↓w ‖ ≥
m− 1 and F∞(t) ∈ (m− 1)n.
Cany = K and ‖t1‖ > 0 By the fundamental lemma of maximality we have that
‖(Cany tn) ↓w ‖ + ‖t1‖ + 1 = ‖Cany tn ‖ ≥ m. By the induction hypothesis we have
that ‖F∞(t1)‖ ≥ ‖t1‖ − 1. Thus

‖F∞(t)‖ = ‖(t)↓w ‖+ ‖F∞(t1)‖+ 1

≥ ‖(t)↓w ‖+ ‖t1‖
= ‖t‖ − 1

≥ m− 1

and so F∞(t) ∈ (m− 1)w.

3 Term Order

First, Becker et al.’s [2] graceful higher-order basic KBO is presented as it is utilised
within our ordering. The presentation here differs slightly from that in [2] because we
do not allow ordinal weightings and all function symbols have finite arities. Further-
more, we do not allow the use of different operators for the comparison of tuples, but
rather restrict the comparison of tuples to use only the length-lexicographic extension of
the base order. This is denoted�length lex

hb . The length-lexicographic extension first com-
pares the lengths of tuples and if these are equal, carries out a lexicographic comparison.
For this section, terms are assumed to be untyped following the original presentation.

3.1 Graceful Higher-Order Basic KBO

Standard first-order KBO first compares the weights of terms, then compares their head-
symbols and finally compares arguments recursively. When working with higher-order
terms, the head symbol may be a variable. To allow the comparison of variable heads, a
mapping ghd is introduced that maps variable heads to members of Σ that could possi-
bly instantiate the head. This mapping respects arities if for any variable x, all members
of ghd(x) have arities greater or equal to that of x. The mapping can be extended to
constant heads by taking ghd(f) = {f}. A substitution σ respects the mapping ghd, if
for all variables x, ghd(xσ) ⊆ ghd(x).

Let � be a total well-founded ordering or precedence on Σ. The precedence � is
extended to arbitrary heads by defining ζ � ξ iff ∀f ∈ ghd(ζ) and ∀g ∈ ghd(ξ), f � g.
Let w be a function from Σ to N that denotes the weight of a function symbol and W a
function from T to N denoting the weight of a term. Let ε ∈ N>0. For all constants c,
w(c) ≥ ε. The weight of a term is defined recursively:

W (f) = w(f) W (x) = ε W (s t) = W (s) + W (t)

The graceful higher-order basic Knuth-Bendix order >hb is defined inductively as
follows. Let t = ζ t and s = ξ s . Then t >hb s if vars#(s) ⊆ vars#(t) and any of
the following are satisfied:

Z1 W (t) > W (s)
Z2 W (t) = W (s) and ζ � ξ
Z3 W (t) = W (s), ζ = ξ and t �length lex

hb s

3.2 Combinator Orienting KBO

The combinator orienting KBO is the focus of this paper. It has the property that all
ground instances of combinator axioms are oriented by it left-to-right. This is achieved
by first comparing terms by the length of the longest weak reduction from the term and
then using>hb. This simple approach runs into problems with regards to stability under
substitution, a crucial feature for any ordering used in superposition.

Consider the terms t = f x a and s = x b. As the length of the maximum reduction
from both terms is 0, the terms would be compared using >hb resulting in t � s as
W (t) > W (s). Now, consider the substitution θ = {x → I}. Then, ‖sθ‖ = 1 whilst
‖tθ‖ = 0 resulting in sθ � tθ.

The easiest and most general way of obtaining an order which is stable under sub-
stitution would be to restrict the definition of the combinator orienting KBO to ground
terms and then semantically lift it to non-ground terms as mentioned in the introduc-
tion. However, the semantic lifting of the ground order is non-computable and therefore
useless for practical purposes. We therefore provide two approaches to achieving an
ordering that can compare non-ground terms and is stable under substitution both of
which approximate the semantic lifting. Both require some conditions on the forms of
terms that can be compared. The first is simpler, but more conservative than the second.

First, in the spirit of Bentkamp et al. [3], we provide a translation that replaces
“problematic” subterms of the terms to be compared with fresh variables. With this

approach, the simple variable condition of the standard KBO, vars#(s) ⊆ vars#(t),
ensures stability. However, this approach is over-constrained and prevents the compar-
ison of terms such as t = x a and s = x b despite the fact that for all substitutions
θ, ‖tθ‖ = ‖sθ‖. Therefore, we present a second approach wherein no replacement of
subterms occurs. This comes at the expense of a far more complex variable condition.
Roughly, the condition stipulates that two terms are comparable if and only if the vari-
ables and relevant combinators are in identical positions in each.

Approach 1 Because the >hb ordering is not defined over typed terms, type arguments
are replaced by equivalent term arguments before comparison. The translation ([]) from
T to untyped terms is given below. First we define precisely the subterms that require
replacing by variables.

Definition 1 (Type-1 term). Consider a term t of the form Cany tn . If there exists a
position p such t|p is a variable, then t is a type-1 term.

Definition 2 (Type-2 term). A term x tn where n > 0 is a type-2 term.

The translation from polymorphic terms to untyped terms with problematic subterms
replaced:

([t]) =

τ t is a type variable τ
κ ([σn]) t = κ(σn)

x t is a term variable x
xt t is a type-1 or type-2 term
f ([τn]) t = f〈 τn 〉
([t1])([t2]) t = t1 t2

An untyped term t weak reduces to an untyped term t′ in one step if t = u[s]p and
there exists a combinator axiom l = r and substitution σ such that ([l])σ = s and t′ =
u[([r])σ]p. The aim of the ordering presented here is to parametrise the superposition
calculus. For this purpose, the property that for terms t and t′, t −→w t′ =⇒ t � t′,
is desired. To this end, the following lemma is proved.

Lemma 3. For all term ground polymorphic terms t and t′, it is the case that t −→w

t′ ⇐⇒ ([t]) −→w ([t′]).

Proof. The =⇒ direction is proved by induction on t. If the reduction occurs at ε,
then t is of the form Cany〈 τn 〉 tn . We prove that the lemma holds if Cany = S. The
other cases are similar. If t = S〈τ1, τ2, τ3〉 tn , then ([t]) = S τ1 τ2 τ3 ([t0])([t1])([t2])
([t3 . . . tn]) −→w ([t0])([t2])(([t1])([t2]))([t3 . . . tn]) = ([t0 t2 (t1 t2) t3 . . . tn]) = ([t′]).
Now assume that the reduction does not occur at ε. In this case, t = ξ tn , ti −→w t′i
and t′ = ξ t0 . . . ti−1 t

′
i ti+1 . . . tn. By the induction hypothesis, ([ti]) −→w ([t′i]). Thus,

([t]) = ([ξ])([tn]) −→w ([ξ])([ti−1])([t
′
i])([ti+1 . . . tn]) = ([t′]).

The ⇐= direction can be proved in a nearly identical manner.

Corollary 1. A straightforward corollary of the above lemma is that for all term-ground
polymorphic terms t, ‖t‖ = ‖([t])‖.

The combinator orienting Knuth-Bendix order (approach 1) >ski1 is defined as fol-
lows. For terms t and s, let t′ = ([t]) and s′ = ([s]). Then t >ski1 s if vars#(s′) ⊆
vars#(t

′) and:

R1 ‖t′‖ > ‖s′‖ or,
R2 ‖t′‖ = ‖s′‖ and t′ >hb s

′.

Approach 2 Using approach 1, terms t = y a and s = y b are incomparable. Both are
type-2 terms and therefore ([t]) = xt and ([s]) = xs. The variable condition obviously
fails to hold between xt and xs. Therefore, we consider another approach which does
not replace subterms with fresh variables. We introduce a new translation JK from T
to untyped terms that merely replaces type arguments with equivalent term arguments
and does not affect term arguments at all. The simpler translation comes at the cost
of a more complex variable condition. Before the revised variable definition can be
provided, some further terminology requires introduction.

Definition 3 (Safe Combinator). Let Cany occur in t at position p and let p′ be the
shortest prefix of p such that head(t|p′) is a combinator and for all positions p′′ between
p and p′, head(t|p′′) is a combinator. Let p′′ be a prefix of p of length one shorter than
p′ if such a position exists and ε otherwise. Then Cany is safe in t if t|p′ is ground and
head(t|p′′) /∈ V and unsafe otherwise.

Intuitively, unsafe combinators are those that could affect a variable on a longest
reduction path or could become applied to a subterm of a substitution. For example, all
combinators in the term S (K I) ax are unsafe because they affect x, whilst the com-
binator in f (I b) y is safe. The combinators in x (S I) a are unsafe because they could
potentially interact with a term substituted for x.

Definition 4. We say a subterm is top-level in a term t if it doesn’t appear beneath an
applied variable or fully applied combinator head in t.

Definition 5 (Safe). Let t1 and t2 be untyped terms. The predicate safe(t1, t2) holds
if for every position p in t2 such that t2|p = Cany tn and Cany (not necessarily fully
applied) is unsafe, then t1|p = Cany sn and for 1 ≤ i ≤ n, ‖si‖ ≥ ‖ti‖. Further,
for all p in pos(t2) such that t2|p = x tn , then t1|p = x sn and for 1 ≤ i ≤ n,
‖si‖ ≥ ‖ti‖.

The definition of safe ensures that if safe(t, s) and ‖t‖ ≥ ‖s‖, then ‖tσ‖ ≥ ‖sσ‖
for any substitution σ a result we prove in Lemma 13. Consider terms t = x (I(I (I a))) b
and s = x a (I (I b)). We have that ‖t‖ = 3 > ‖s‖ = 2. However, it is not the case that
safe(t, s) because the condition that ‖ti‖ ≥ ‖si‖ for all i is not met. ‖t2‖ = ‖b‖ =
0 < 2 = ‖I (I b)‖ = ‖s2‖. Now consider the substitution σ = {x→ S c}. Because this
substitution duplicates the second argument in s and t, ‖tσ‖ = 4 < ‖sσ‖ = 5 showing
the importance of the safe predicate in ensuring stability.

We draw out some obvious consequences of the definition of safety. Firstly, the
predicate enjoys the subterm property in the following sense. If p is a position defined
in terms t1 and t2, then safe(t1, t2) =⇒ safe(t1|p, t2|p). Secondly, the predicate is
transitive; safe(t1, t2) ∧ safe(t2, t3) =⇒ safe(t1, t3).

There is a useful property that holds for non-ground terms t and s such that safe(t, s).

Definition 6 (Semisafe). Let t and s be untyped terms. Let Cany sn be a term that
occurs in s at p such that all head symbols above Cany in s are combinators. Then
semisafe(t, s) if t|p = Cany tn and for 1 ≤ i ≤ n, ‖ti‖ ≥ ‖si‖.

It is clearly the case that (t not ground) ∧ (s not ground) ∧ safe(t, s) =⇒
semisafe(t, s). The implication does not hold in the other direction. A useful prop-
erty of semisafe is that it is stable under head reduction. If for terms t and s that
reduce at their heads to t′ and s′ respective, we have semisafe(t, s), then we have
semisafe(t′, s′).

Variable Condition:
Let t′ = JtK and s′ = JsK for polymorphic terms t and s. Let A be the multiset of
all top-level, non-ground, first-order subterms in s′ of the form x sn (n may be 0) or
Cany tn . Let B be a similarly defined multiset of subterms of t′. Then, var cond(t′, s′)
holds if there exists an injective total function f fromA toB such that f only associates
terms t1 and t2 if safe(t1, t2).

For example var cond(t, s) holds where t = f y (x a) and s = g (x b). In this case
A = {x b} and B = {y, x a}. There exists and injective total function from A to B
that matches the requirements by relating x b to x a. However, the variable condition
does not hold in either direction if t = f y (x a) and s = g (x (I b)). In this case, x (I b)
cannot be related to x a since the condition that ‖a‖ ≥ ‖I b‖ is not fulfilled.

We now define the combinator orienting Knuth-Bendix order (approach 2)>ski. For
terms t and s, let t′ = JtK and s′ = Js′K. Then t >ski s if var cond(t′, s′) and:

R1 ‖t′‖ > ‖s′‖ or,
R2 ‖t′‖ = ‖s′‖ and t′ >hb s

′.

Lemma 4. For all ground instances of combinator axioms l ≈ r, we have l >ski r.

Proof. Since for all ground instances of the axioms l ≈ r, we have ‖l‖ > ‖r‖, the
theorem follows by an application of R1.

It should be noted that for a non-ground instances of an axiom l ≈ r, we do not
necessarily have l >ski r since l and r may be incomparable. This is no problem since
the definition of >ski could easily be amended to have l >ski r by definition if l ≈ r is
an instance of an axiom. Lemma 4 ensures that stability under substitution would not
be affected by such an amendment.

4 Properties

Various properties of the order >ski are proved here. The proofs can easily be modified
to hold for the less powerful >ski1 ordering. In general, for an ordering to parameterise
a superposition calculus, it needs to be a simplification ordering [18]. That is, superpo-
sition is parameterised by an irreflexive, transitive, total on ground-terms, compatible
with contexts, stable under substitution and well-founded binary relation. Compatibility

with contexts can be relaxed at the cost of extra inferences [8,3,5]. A desirable property
to have in our case is coincidence with first-order KBO, since without this, the calculus
would not behave on first-order problems as standard first-order superposition would.

Theorem 1 (Irreflexivity). For all terms s, it is not the case that s >ski s.

Proof. Let s′ = JsK. It is obvious that ‖s′‖ = ‖s′‖. Therefore s >ski s can only be
derived by rule R2. However, this is precluded by the irreflexivity of >hb.

Theorem 2 (Transitivity). For terms s, t and u, if s >ski t and t >ski u then s >ski u.

Proof. Let s′ = JsK, t′ = JtK and u′ = JuK. First we prove that if var cond(s′, t′)
and var cond(t′, u′), then var cond(s′, u′). Since var cond(t′, u′) holds, there exists
a function f1 from the the multiset of top-level, non-ground, first-order subterms in
u′ of the form x args or Cany args to the like multiset in t′ that meets the given
requirements. There is a similar function f2 for s′ and t′. We show that f2 ◦ f1 is a
function with the desired characteristics for terms u′ and s′. Since f1 and f2 are both
injective and total, f2◦f1 must be injective and total. It remains to prove that f2◦f1 only
relates a subterm u1 of u′ to a subterm s1 of s′ if safe(u1, s1). This is a straightforward
consequence of the transitivity of safe.

If ‖s′‖ > ‖t′‖ or ‖t′‖ > ‖u′‖ then ‖s′‖ > ‖u′‖ and s >ski u follows by an
application of rule R1. Therefore, suppose that ‖s′‖ = ‖t′‖ = ‖u′‖. Then it must be the
case that s′ >hb t

′ and t′ >hb u
′. It follows from the transitivity of >hb that s′ >hb u

′

and thus s >ski u.

Theorem 3 (Ground Totality). Let s and t be ground terms that are not syntactically
equal. Then either s >ski t or t >ski s.

Proof. Let s′ = JsK and t′ = JtK. If ‖s′‖ 6= ‖t′‖ then by R1 either s >ski t or t >ski s.
Otherwise, s′ and t′ are compared using >hb and either t′ >hb s

′ or s′ >hb t
′ holds by

the ground totality of >hb and the injectivity of JK.

Theorem 4 (Subterm Property for Ground Terms). If t and s are ground and t is a
proper subterm of s then s >ski t.

Proof. Let s′ = JsK and t′ = JtK. Since t is a subterm of s, t′ is a subterm of s′

and ‖s′‖ ≥ ‖t′‖ because any weak reduction in t′ is also a weak reduction in s′. If
‖s′‖ > ‖t′‖, the theorem follows by an application of R1. Otherwise s′ and t′ are
compared using >hb and s′ >hb t

′ holds by the subterm property of >hb. Thus s >ski t.

Next, a series of lemmas are proved that are utilised in the proof of the ordering’s
compatibility with contexts and stability under substitution. We prove two monotonicity
properties Theorems 5 and 6. Both hold for non-ground terms, but to show this, it is
required to show that the variable condition holds between terms u[t] and u[s] for t and
s such that t >ski s. To avoid this complication, we prove the Lemmas for ground terms
which suffices for our purposes. To avoid clutter, assume that terms mentioned in the
statement of Lemmas 5 - 16 are all untyped, formed by translating polymorphic terms.

Lemma 5. ‖ζ tn ‖ =
∑n
i=1 ‖ti‖ if ζ is not a fully applied combinator.

Proof. Trivial.

Lemma 6. Let t = ζ tn . Then ‖t‖ >
∑n
i=1 ‖ti‖ if ζ is a fully applied combinator.

Proof. Since any reduction from a ti is also a reduction from t and there exists the re-
duction at the root, we have that ‖t‖ ≥

∑n
i=1 ‖ti‖+1 which implies ‖t‖ >

∑n
i=1 ‖ti‖.

Lemma 7. Let tn be terms such that for each ti, head(ti) /∈ {I,K,B,C,S}. Let t′n be
terms with the same property. Moreover, let ‖ti‖ ≥ ‖t′i‖ for 1 ≤ i ≤ n. Let s = u[tn]
and s′ = u[t′n] where each ti and t′i is at position pi in s and s′. If the F∞ redex in s is
within ti for some i, then the F∞ redex in s′ is within t′i unless t′i is in normal form.

Proof. Proof is by induction on |s| + |s′|. If u has a hole at head position, then s =
f rm sm′′ and s′ = g vm′ s′m′′ where t1 = f rm and t′1 = g vm′ . Assume that the
F∞ redex of s is in t1. Further, assume that ‖t′1‖ > 0. Then, for some i in {1 . . .m′},
it must be the case that ‖vi‖ > 0. Let j be the smallest index such that ‖vj‖ > 0. Then
by the definition of F∞, F∞(s′) = g v1 . . . vj−1 F∞(vj) vj+1 . . . vm′ s′m′′ and the F∞
redex of s′ is in t′1.

Suppose that the F∞ redex of s is not in t1. This can only be the case if ‖t1‖ =
0 in which case ‖t′1‖ = 0 as well. In this case, by the definition of F∞, F∞(s) =
f rm s1 . . . si−1 F∞(si) si+1 . . . s

′′
m where ‖sj‖ = 0 for 1 ≤ j < i. Without loss of

generality, assume that the F∞ redex of si occurs inside ti. Then t′i must be a subterm
of s′i. Assume that ‖t′i‖ > 0 and thus ‖s′i‖ > 0. Since for all i, si and s′i only differ
at positions where one contains a tj and the other contains a t′j and ‖ti‖ ≥ ‖t′i‖ for
1 ≤ i ≤ m′′, we have that ‖sj‖ = 0 implies ‖s′j‖ = 0. Thus, using the definition of
F∞, F∞(s′) = g vm′ s′1 . . . s

′
i−1 F∞(s′i) s

′
i+1 . . . s

′
m′′ . The induction hypothesis can

be applied to si and s′i to conclude that the F∞ redex of s′i occurs inside t′i. The lemma
follows immediately.

If u does not have a hole at its head, then s = ζ sn and s′ = ζ s′n where ζ is not a
fully applied combinator other than K (if it was, the F∞ redex would be at the head).

If ζ is not a combinator, the proof follows by a similar induction to above. There-
fore, assume that ζ = K. It must be the case that ‖s2‖ > 0 otherwise the F∞ redex
in s would be at the head and not within a ti. By the definition of F∞, F∞(s) =
K s1 F∞(s2) s3 . . . sn. Let the F∞ redex of s2 occur inside tj . Then t′j is a subterm of
s′2. If ‖t′j‖ > 0 then ‖s′2‖ > 0 and F∞(s′) = K s′1 F∞(s′2) s

′
3 . . . s

′
n. By the induction

hypothesis, the F∞ redex of s′2 occurs in t′j .

Lemma 8. Let tn be terms such that for 1 ≤ i ≤ n, head(ti) /∈ {I,K,B,C,S}. Then
for all contexts u[]n, if u[tn] −→w u

′ then either:
1. ∃i.u′ = u[t1, . . . , t̂i, . . . , tn] where ti −→w t̂i or
2. u′ = û{x1 → t1, . . . , xn → tn} where u[x1, . . . , xn] −→w û

Proof. Let s = u[tn] and let p1, . . . pn be the positions of tn in s. Since s is reducible,
there must exist a p such that s|p is a redex.

If p > pi for some i, there exists a p′ 6= ε such that p = pip
′. Then, u[t1, . . . , ti,

. . . , tn]|pi = ti[Cany rn]p′ −→w ti[(Cany rn) ↓w]p′ . Let t̂i = ti[(Cany rn) ↓w]p′ . We
thus have that ti −→w t̂i and thus u[t1, . . . , ti, . . . , tn] −→w u[t1, . . . , t̂i, . . . , tn].

It cannot be the case that p = pi for any i because head(ti) is not a combinator for
any ti. In the case where p < pi or p ‖ pi for all i, we have that u[tn] = (u[xn])σ and
u[xn]|p is a redex where σ = {xn → tn }. Let û be formed from u[xn] by reducing
its redex at p. Then :

s = u[tn] = (u[xn])σ

−→w ûσ

= û{x1 → t1 . . . xn → tn}

Lemma 9. Let tn be terms such that for each ti, head(ti) /∈ {I,K,B,C,S}. Let t′n
be terms with the same property. Then:
1. If ‖ti‖ = ‖t′i‖ for all i in {1, . . . , n}, then ‖u[tn]‖ = ‖u[t′n]‖ for all n holed

contexts u.
2. If ‖tj‖ > ‖t′j‖ for some j ∈ {1, . . . , n} and ‖ti‖ ≥ ‖t′i‖ for i 6= j, then ‖u[tn]‖ >
‖u[t′n]‖ for all n holed contexts u.

Proof. Let p1, . . . , pn be the positions of the holes in u and let s = u[tn] and s′ =
u[t′n]. Proof is by induction on ‖s‖+ ‖s′‖. We prove part (1) first:

Assume that ‖u[tn]‖ = 0. Then ‖ti‖ = 0 for 1 ≤ i ≤ n. Now assume that
‖u[t′n]‖ 6= 0. Then there must exist some position p such that s′|p is a redex. We have
that p 6= pi for all pi as head(t′i) /∈ {I,K,B,C,S}. Assume p > pi for some pi. But
then, ‖t′i‖ > 0 which contradicts the fact that ‖ti‖ = ‖t′i‖ for all i. Therefore, for all pi
either p < pi or p ‖ pi. But then, if s′|p is a redex, so must s|p be, contradicting the fact
that ‖u[tn]‖ = 0. Thus, we conclude that ‖u[t′n]‖ = 0.

Assume that ‖u[tn]‖ > 0. Let u′ = F∞(s). By Lemma 8 either u′ = u[t1, . . . , t̂i,
. . . , tn] where ti −→w t̂i for 1 ≤ i ≤ n or u′ = û{xn → tn } where u[xn] −→w û.
In the first case, by Lemma 7 and ‖ti‖ = ‖t′i‖ we have F∞(s′) = u′′ = u[t′1, . . . , t̂

′
i,

. . . , t′n] where t′i −→w t̂′i. By the induction hypothesis ‖u′‖ = ‖u′′‖ and thus ‖s‖ =
‖s′‖. In the second case, F∞(s′) = u′′ = û{xn → t′n } where u[xn] −→w û. Again,
the induction hypothesis can be used to show ‖u′‖ = ‖u′′‖ and the theorem follows.

We now prove part (2); ‖u[tn]‖ must be greater than 0. Again, let u′ = F∞(s)
and u′′ = F∞(s′). If u′ = u[t1, . . . , t̂i, . . . , tn] and ‖t′i‖ 6= 0, then by Lemma 7
u′′ = u[t′1, . . . , t̂

′
i, . . . , t

′
n] where t′i −→w t̂′i unless ‖t′i‖ = 0 and the lemma follows by

the induction hypothesis.
If ‖t′i‖ = 0, consider terms u′ and s′. If ‖t̂i‖ > 0 or ‖tj‖ > ‖t′j‖ for some j 6= i,

then the induction hypothesis can be used to show ‖u′‖ > ‖s′‖ and therefore ‖s‖ =
‖u′‖ + 1 > ‖s′‖. Otherwise, ‖tj‖ = ‖t′j‖ for all j 6= i and ‖t̂i‖ = 0 = ‖t′i‖. Part 1 of
this lemma can be used to show that ‖u′‖ = ‖s′‖ and thus ‖s‖ = ‖u′‖ + 1 > ‖s′‖. If
u′ = û{xn → tn }, then u′′ = û{xn → t′n } and the lemma follows by the induction
hypothesis.

Theorem 5 (Compatibility with Contexts). For ground terms s and t, such that head(s),
head(t) /∈ {I,K,B,C,S}, and s >ski t, then u[s] >ski u[t] for all ground contexts u[].

Proof. Let s′ = JsK, t′ = JtK and u′ = JuK. By Lemma 9 Part 2, we have that if
‖s′‖ > ‖t′‖, then ‖u′[s′]‖ > ‖u′[t′]‖. Thus, if s >ski twas derived by R1, u[s] >ski u[t]

follows by R1. Otherwise, s >ski t is derived by R2 and ‖s′‖ = ‖t′‖. By Lemma
9 Part 1, ‖u′[s′]‖ = ‖u′[t′]‖ follows. Thus, u′[s′] is compared with u′[t′] by R2 and
u[s] >ski u[t] by the compatibility with contexts of >hb.

Corollary 2 (Compatibility with Arguments). If s >ski t and head(s) and head(t)
are not combinators then s u >ski t u.

Proof. This is just a special case of Theorem 5.

Lemma 10. ‖s‖ > ‖t‖ =⇒ ‖u〈〈s〉〉‖ > ‖u〈〈t〉〉‖ and ‖s‖ = ‖t‖ =⇒ ‖u〈〈s〉〉‖ =
‖u〈〈t〉〉‖.

Proof. Proceed by induction on the size of the context u. If u is the empty context, both
parts of the theorem hold trivially.

The inductive case is proved for the first implication of the lemma first. If u is not the
empty context, u〈〈s〉〉 is of the form u′〈〈ζ t1 . . . ti−1, s, ti+1 . . . tn〉〉 . By the definition
of a stable subterm ζ cannot be a fully applied combinator and thus by Lemma 5 we
have :

‖ζ t1 . . . ti−1, s, ti+1 . . . tn‖ =
∑n

j=1
j 6=i
‖tj‖+ ‖s‖

>
∑n

j=1
j 6=i
‖tj‖+ ‖t‖

= ‖ζ t1 . . . ti−1, t, ti+1 . . . tn‖

If ζ is not a combinator, then ‖u′〈〈ζ t1 . . . ti−1, s, ti+1 . . . tn〉〉‖ > ‖u′〈〈ζ t1 . . . ti−1, t,
ti+1 . . . tn〉〉‖ follows from Lemma 9 Part 2. Otherwise, ζ is a partially applied combi-
nator and u′ is a smaller stable context than u. The induction hypothesis can be used
to conclude that ‖u′〈〈ζ t1 . . . ti−1, s, ti+1 . . . tn〉〉‖ > ‖u′〈〈ζ t1 . . . ti−1, t, ti+1 . . . tn〉〉‖
and thus that ‖u〈〈s〉〉‖ > ‖u〈〈t〉〉‖. The proof of the inductive case for the second impli-
cation of the lemma is almost identical.

Theorem 6 (Compatibility with Stable Contexts). For all stable ground contexts
u〈〈〉〉 and ground terms s and t, if s >ski t then u〈〈s〉〉 >ski u〈〈t〉〉.

Proof. If ‖s‖ > ‖t‖ then by Lemma 10, ‖u〈〈s〉〉‖ > ‖u〈〈t〉〉‖ holds and then by an
application of R1 we have u〈〈s〉〉 >ski u〈〈t〉〉. Otherwise, if ‖s‖ = ‖t‖, then by Lemma
10 we have that ‖u〈〈s〉〉‖ = ‖u〈〈t〉〉‖. Thus u〈〈s〉〉 and u〈〈t〉〉 are compared using >hb.
By the compatibility with contexts of >hb, Ju〈〈s〉〉K >hb Ju〈〈t〉〉K holds and then by ofan
application of R2 u〈〈s〉〉 >ski u〈〈t〉〉 is true.

We next prove stability under substitution. In order to prove this, it needs to be
shown that for untyped terms s and t and all substitutions σ:
1. var cond(s, t) implies var cond(sσ, tσ).
2. var cond(s, t) and ‖s‖ ≥ ‖t‖ imply ‖sσ‖ ≥ ‖tσ‖

The first is proved in Lemma 15. A slightly generalised version of (2) is proved in
Lemma 14. Lemmas 11 - 13 are helper lemmas used in the proof of the above two
properties.

Lemma 11. For a single hole context u〈〈〉〉 such that the hole does not occur below a
fully applied combinator and any term t, ‖u〈〈t〉〉‖ = ‖u〈〈〉〉‖+ ‖t‖.

Proof. Proceed by induction on the size of u. If u is the empty context the theorem
follows trivially. Therefore, assume that u = f t . . . ti−1 u

′〈〈〉〉 ti+1 . . . tn. By Lemma 5
‖u〈〈〉〉‖ =

∑n
i=1 ‖ti‖ + ‖u′〈〈〉〉‖. Because u′ is a smaller context than u, the induction

hypothesis can be used to show ‖u′〈〈t〉〉‖ = ‖u′〈〈〉〉‖+ ‖t‖. Thus:

‖u〈〈t〉〉‖ =
n∑
i=1

‖ti‖+ ‖u′〈〈t〉〉‖

=

n∑
i=1

‖ti‖+ ‖u′〈〈〉〉‖+ ‖t‖

= ‖u〈〈〉〉‖+ ‖t‖

proving the theorem.

Lemma 12. Let tn and sn be terms such that for n1 . . . nn ∈ N and for 1 ≤ i ≤ n,
‖ti‖ ≥ ‖si‖ + ni. Further, let t = t1 t2 . . . tn and s = s1 s2 . . . sn. Assume that
semisafe(t, s) holds. Then ‖t‖ ≥ ‖s‖+

∑n
i=1 ni.

Proof. Assume that head(s) is not a fully applied combinator. By an application of
Lemmas 5 and 6 it follows that, ‖t‖ ≥ ‖t1‖+ · · ·+ ‖tn‖ ≥ ‖s1‖+ · · ·+ ‖sn‖+ n1 +
· · ·+ nn and the Lemma follows.

If head(s) is a fully applied combinator, we proceed by induction on ‖t‖ + ‖s‖.
The proof splits into two depending on whether head(s1) (and therefore head(t1)) is a
fully applied combinator or not.

If s1 = Cany s′m , the semisafe condition ensures that t1 = Cany t′m . Let t′ =
F∞(t0) and s′ = F∞(s0). Then, ‖t1‖ = ‖t′‖+1 and ‖s1‖ = ‖s′‖+1, so ‖t′‖ ≥ ‖s′‖+
n1. Since ‖t′ t2 . . . tn‖+‖s′ s2 . . . sn‖ < ‖t‖+‖s‖ and semisafe(t′ t2 . . . tn, s′ s2 . . . sn),
the induction hypothesis can be invoked to conclude that ‖t′ t2 . . . tn‖ ≥ ‖s′ s2 . . . sn‖+∑n
i=1 ni. From this, ‖t‖ ≥ ‖s‖ +

∑n
i=1 ni follows since ‖t‖ = 1 + ‖t′ t2 . . . tn‖ and

‖s‖ = 1 + ‖s′ s2 . . . sn‖.
If head(s1) is a partially applied combinator, the proof follows by a case analysis

of the particular combinator along with its argument number. We provide the proofs for
all cases relating to the S-, K- and I-combinators.

Let s1 = I. Then t1 = I and n1 = 0. For terms t′ = F∞(t) = t2 . . . tn and
s′ = F∞(s) = s2 . . . sn, the induction hypothesis gives that ‖t′‖ ≥ ‖s′‖ +

∑n
i=2 ni.

Then ‖t‖ ≥ ‖s‖+
∑n
i=2 ni + 0 = ‖s‖+

∑n
i=1 ni.

Let s1 = K. Then t1 = K and n1 = 0. By the fundamental lemma of maxi-
mality, ‖t‖ = ‖t2 t4 . . . tn‖ + ‖t3‖ and ‖s‖ = ‖s2 s4 . . . sn‖ + ‖s3‖. The induction
hypothesis can be used on the terms t2 t4 . . . tn and s2 s4 . . . sn and t3 and s3 to show
‖t2 t4 . . . tn‖ ≥ ‖s2 s4 . . . sn‖+n2 +n4 + · · ·+nn and ‖t3‖ ≥ ‖s3‖+n3. From this,
it can be concluded that ‖t‖ ≥ ‖s‖+

∑n
i=2 ni + 0 =

∑n
i=1 ni.

Let s1 = K s′. Then t1 = K t′. Since ‖t1‖ ≥ ‖s1‖ + n1 and any weak-reductions
in t1 must occur in t′ and any weak reductions in s1 must occur in s′, we have that

‖t′‖ ≥ ‖s′‖+n1. By the fundamental lemma of maximality, ‖t‖ = ‖t′ t3 . . . tn‖+‖t2‖
and ‖s‖ = ‖s′ s3 . . . sn‖ + ‖s2‖. The induction hypothesis can be used on the terms
t′ t3 . . . tn and s′ s3 . . . sn and t2 and s2 to show ‖t′ t3 . . . tn‖ ≥ ‖s′ s3 . . . sn‖+ n1 +
n3 + · · · + nn and ‖t2‖ ≥ ‖s2‖ + n2. From this, it can be concluded that ‖t‖ ≥
‖s‖+

∑n
i=1 ni.

Assume that s1 = S. Then t1 = S and n1 = 0. Let t′ = F∞(t) = t2 t4 (t3 t4) t5 . . . tn
and s′ = F∞(s) = s2 s4 (s3 s4) s5 . . . sn. The induction hypothesis can be utilised on
t3 t4 and s3 s4 to give ‖t3 t4‖ ≥ ‖s3 s4‖+n3+n4. The induction hypothesis can be used
a second time on t′ and s′ to give ‖t′‖ ≥ ‖s′‖+ n2 + n4 + n3 + n4 + n5 + · · ·+ nn.
Since n2 + n4 + n3 + n4 + n5 + · · · + nn ≥

∑n
i=2 ni, it can be concluded that

‖t‖ ≥ ‖s‖+
∑n
i=2 ni + 0 =

∑n
i=1 ni.

Assume that s1 = S s′. Then t1 = S t′ and ‖t′‖ ≥ ‖s′‖ + n1. Let t′ = F∞(t) =
t′ t3 (t2 t3) t4 . . . tn and s′ = F∞(s) = s′ s3 (s2 s3) s4 . . . sn. The induction hypothesis
can be utilised on t2 t3 and s2 s3 to give ‖t2 t3‖ ≥ ‖s2 s3‖ + n2 + n3. The induction
hypothesis can be used a second time on t′ and s′ to give ‖t′‖ ≥ ‖s′‖+n1+n3+n2+
n3 + n4 + · · ·+ nn. Since n1 + n3 + n2 + n3 + n4 + · · ·+ nn ≥

∑n
i=1 ni, it can be

concluded that ‖t‖ ≥ ‖s‖+
∑n
i=1 ni.

Assume that s1 = S s′1 s
′
2. Then t1 = S t′1 t

′
2. Further, ‖t′1‖ ≥ ‖s′1‖ + n′1 and

‖t′2‖ ≥ ‖s′2‖ + n′2 where n′1 + n′2 = n1. Let t′ = F∞(t) = t′1 t2 (t
′
2 t2) t3 . . . tn and

s′ = F∞(s) = s′1 s2 (s
′
2 s2) s3 . . . sn. The induction hypothesis can be utilised on t′2 t2

and s′2 s2 to give ‖t′2 t2‖ ≥ ‖s′2 s2‖+ n′2 + n2. The induction hypothesis can be used a
second time on t′ and s′ to give ‖t′‖ ≥ ‖s′‖ + n′1 + n2 + n′2 + n2 + n3 + · · · + nn.
Since n′1 + n2 + n′2 + n2 + n3 + · · · + nn ≥

∑n
i=1 ni, it can be concluded that

‖t‖ ≥ ‖s‖+
∑n
i=1 ni.

Lemma 13. Let t and s be non-ground terms such that ‖t‖ ≥ ‖s‖+m for somem ∈ N
and safe(t, s). Then, for any substitution σ, ‖tσ‖ ≥ ‖sσ‖+m and safe(tσ, sσ).

Proof. By induction on |t|+ |s|. Assume that head(s) is not a fully applied combinator
or variable. Let t = ζ tn and s = f sn . Without loss of generality, it can be assumed
that ζ and f have the same number of arguments since if they did not, the term whose
head had fewer arguments could be padded with an arbitrary constant d. Since ‖d‖ =
‖dσ‖ = 0 for all substitutions σ this has no impact on the lemma. For 1 ≤ i ≤ n,
we have that ‖ti‖ ≥ ‖si‖ + ni for ni ∈ I where ni could possibly be negative and∑n
i=1 ni = m.
We proceed to show that for 1 ≤ i ≤ n and all σ, ‖tiσ‖ ≥ ‖siσ‖ + ni and

safe(tiσ, siσ). For some i, if ti and si are ground then it is obviously the case that
‖tiσ‖ ≥ ‖siσ‖ and safe(tiσ, siσ). If si is ground and ti is not, ‖tiσ‖ ≥ ‖ti‖ ≥
(‖si‖ + ni) = (‖siσ‖ + ni). If si is not ground, ti cannot be ground by safe(t, s).
Therefore, the induction hypothesis can be applied to show ‖tiσ‖ ≥ ‖siσ‖+ni and that
safe(tiσ, siσ). The fact that for 1 ≤ i ≤ n, ‖tiσ‖ ≥ ‖siσ‖ + ni and safe(tiσ, siσ)
implies that ‖tσ‖ =

∑n
i=1 ‖tiσ‖ ≥

∑n
i=1 ‖siσ‖ +

∑n
i=1 ni = ‖sσ‖ +m. Further, it

also implies safe(tσ, sσ).
Assume that head(s) is a variable. Then, by the safety condition, head(t) is the

same variable, t = x tn and s = x sn . For any substitution σ, tσ is of the form
ξ rm′ tnσ and sσ is of the form ξ rm′ snσ . If ξ is a variable or non-fully applied

combinator, the proof proceeds as per the previous case. If ξ is a fully applied com-
binator we proceed as follows. It is obvious that safe(ri, ri) for 1 ≤ i ≤ m′. For
some i such that 1 ≤ i ≤ n, if ti and si are ground, safe(tiσ, siσ) follows from
safe(t, s). Likewise, if only si is ground. If si is not ground, ti cannot be ground due
to the fact that safe(t, s) and from the induction hypothesis safe(tiσ, siσ) follows.
The fact that for 1 ≤ i ≤ m′, safe(ri, ri) along with safe(tiσ, siσ) for 1 ≤ i ≤ n
implies safe(tσ, sσ).

Further, by the induction hypothesis (along with non-ground assumptions as per the
previous paragraph), we have that ‖tiσ‖ ≥ ‖siσ‖+ni for 1 ≤ i ≤ n and n1 . . . nn ∈ N
such that

∑n
i=1 ni = m. We also have that ‖ri‖ ≥ ‖ri‖+0 for 1 ≤ i ≤ m′. This along

with the fact that semisafe(tσ, sσ), allows Lemma 12 to be applied to tσ and sσ to
conclude that ‖tσ‖ ≥ ‖sσ‖+

∑n
i=1 ni = ‖sσ‖+m.

The final case where head(t) and head(s) are both fully applied combinators is the
same as the previous case when ξ is a fully applied combinator without the need to deal
with the ri.

Lemma 14. For terms t and s such that var cond(t, s) holds and ‖t‖ ≥ ‖s‖ + n for
some n ∈ N, for all substitutions σ, ‖tσ‖ ≥ ‖sσ‖+ n.

Proof. If s and t are ground, the theorem is trivial. If s is ground, then ‖tσ‖ ≥ ‖t‖ ≥
‖s‖+ n. If s is not ground, then var cond(t, s) implies that t is not ground. Therefore,
assume that neither is ground. If head(s) (and therefore head(t) by the variable condi-
tion) are fully applied combinators or variables, then var cond(t, s) implies safe(t, s)
and Lemma 13 can be invoked to prove the lemma. Therefore, assume that both have
non-variable, non-fully applied combinator heads.

Let t = u〈〈 tm 〉〉 and s = u′〈〈 sm 〉〉 where sm are all the non-ground, top-level,
first-order subterms of the form x args or Cany args in s. By the variable condition, we
have that there exists a total injective function respecting the given conditions from the
si to non-ground, top-level, first-order subterms of t of the form x args or Cany args .
Let tm be the terms related to sm by this function. Without loss of generality, assume
that that this function relates s1 to t1, s2 to t2 and so on. For 1 ≤ i ≤ m, ‖ti‖ =
‖si‖ + mi for mi ∈ N. This follows from the fact that since ti and si are both non-
ground and safe(ti, si), we have semisafe(ti, si) and can therefore invoke Lemma
12.

Let m′ = ‖u〈〈〉〉‖ − ‖u′〈〈〉〉‖. Note that m′ could be negative. By Lemma 11, ‖t‖ =
‖u〈〈〉〉‖+

∑m
i=1 ‖ti‖ and ‖s‖ = ‖u′〈〈〉〉‖+

∑m
i=1 ‖si‖. Thus, ‖t‖ = ‖s‖+m′+

∑m
i=1mi.

Therefore, m′ +
∑m
i=1mi ≥ n. Lemma 13 can be used to show that for all i, ‖tiσ‖ ≥

‖siσ‖+mi. Because u′〈〈〉〉 is ground, it follows ‖uσ〈〈〉〉‖−‖u′σ〈〈〉〉‖ ≥ m′. To conclude
the proof:

‖tσ‖ = ‖uσ〈〈 tmσ 〉〉‖

= ‖uσ〈〈〉〉‖+
m∑
i=1

‖tiσ‖

≥ ‖u′σ〈〈〉〉‖+
m∑
i=1

‖siσ‖+m′ +

m∑
i=1

mi

≥ ‖u′σ〈〈〉〉‖+
m∑
i=1

‖siσ‖+ n

= ‖sσ‖+ n

Lemma 15. For terms t and s such that var cond(t, s) holds and for all substitutions
σ, var cond(tσ, sσ).

Proof. Let t = u〈〈 tm 〉〉 and s = u′〈〈 sm 〉〉 where sm are all the non-ground, top-level,
first-order subterms of the form x args or Cany args in s. By the variable condition, we
have that there exists a total injective function respecting the given conditions from the
si to non-ground, top-level, first-order subterms of t of the form x args or Cany args .
Let tm be the terms related to sm by this function. Without loss of generality, assume
that that this function relates s1 to t1, s2 to t2 and so on. By the definition of the variable
condition, we have that u′ must be ground. This implies that any non-ground subterms
of sσ must be subterms of some siσ for 1 ≤ i ≤ m.

Assume that for some i and p ∈ pos(siσ), siσ|p is a non-ground, top-level, first-
order subterm of the form x args or Cany args . We show that tiσ|p is a non-ground,
top-level, first-order subterm of tσ and safe(ti|p, si|p). This implies the existence of a
total, injective function from the multiset of non-ground, top-level first-order subterms
in sσ to the like multiset of tσ in turn proving var cond(tσ, sσ).

From Lemma 13, it can be shown that for 1 ≤ i ≤ m, safe(tiσ, siσ). By the
subterm property of safety, this implies that safe(tiσ|p, siσ|p).

Assume that tiσ|p is ground. Since siσ|p is non-ground, this implies that there exists
a position p′ such that siσ|pp′ is a variable whilst either pp′ is not defined in tiσ or it is
not a variable position. Both contradict the fact that safe(tiσ, siσ).

Assume that tiσ|p is not top-level. That is, tiσ|p occurs beneath a variable or fully
applied combinator. If this variable or combinator was introduced by σ, then there must
exist a term in ti at some prefix p′ of p of the form x argsn such that xσ is of the
form ζ r where ζ is a variable or fully applied combinator. By safe(ti, si), it can
be concluded that si|p′ = x args′n . Since head(xσ) is a variable or fully applied
combiantor, this contradicts the fact that siσ|p is top-level in sσ. If this variable or
combinator was not introduced by σ, then it must have occurred in ti. But then by
safety, it must have occurred in si at the same position again leading to a contradiction.

Finally, siσ|p being a first-order subterm implies that tiσ|p must be first-order com-
pleting the proof.

Lemma 16. Let t be a polymorphic term and σ be a substitution. We define a new
substitution ρ such that the domain of ρ is dom(σ). Define yρ = JyσK. For all terms t,
JtσK = JtKρ.

Proof. Via a straightforward induction on t.

Theorem 7 (Stability under Substitution). If s >ski t then sσ >ski tσ for all substi-
tutions σ that respect the ghd mapping.

Proof. Let s′ = JsK and t′ = JtK. Let ρ be defined as per Lemma 16. First, we show
that if R1 was used to derive s >ski t and thus ‖s′‖ > ‖t′‖ then ‖s′ρ‖ > ‖t′ρ‖ and thus
sσ >ski tσ because JsσK = s′ρ and JtσK = t′ρ.

From Lemma 15 and var cond(s′, t′), var cond(s′ρ, t′ρ) holds. Furthermore, if
‖s′‖ > ‖t′‖, then by Lemma 14 ‖s′ρ‖ > ‖t′ρ‖ and sσ >ski tσ by an application of R1.

On the other hand, if ‖s′‖ = ‖t′‖, then R2 was used to derive s >ski t. By Lemma
14 ‖s′ρ‖ ≥ ‖t′ρ‖. If ‖s′ρ‖ > ‖t′ρ‖, then this is the same as the former case. Other-
wise ‖s′ρ‖ = ‖t′ρ‖ and s′ρ and tρ are compared using R2. From the stability under
substitution of >hb, s′ρ >hb t

′ρ follows and sσ >ski tσ can be concluded.

Theorem 8 (Well-foundedness). There exists no infinite descending chain of compar-
isons s1 >ski s2 >ski s3 · · · .

Proof. Assume that such a chain exists. For each si >ski si+1 derived by R1, we have
that ‖si‖ > ‖si+1‖. For each si >ski si+1 derived by R2, we have that ‖si‖ = ‖si+1‖.
Therefore the number of times si >ski si+1 by R1 in the infinite chain must be finite and
there must exist some m such that for all n > m, sn >ski sn+1 by R2. Therefore, there
exists an infinite sequence of >hb comparisons JsmK >hb Jsm+1K >hb Jsm+2K · · · .
This contradicts the well-foundedness of >hb.

Theorem 9 (Coincidence with First-Order KBO). Let >fo be the first-oder KBO as
described by Becker et al. in [2]. Assume that >ski and >fo are parameterised by the
same precedence � and that >fo always compares tuples using the lexicographic ex-
tension operator. Then >ski and >fo always agree on first-order terms.

Proof. Let t′ = JtK and s′ = JsK. Since s and t are first-order, ‖s′‖ = 0 and ‖t′‖ = 0.
Thus, s′ and t′ will always be compared by >hb. Since >hb coincides with >fo on
first-order terms, so does >ski.

5 Examples

To give a flavour of how the ordering behaves, we provide a number of examples.

Example 1. Consider the terms (ignoring type arguments) t = S (K a) b c and s = f c e.
From the definition of the translation JK, we have that JtK = S (K a) b c and JsK = f c e.
Since ‖S (K a) b c‖ = 2 and ‖f c e‖ = 0, we have that t >ski s.

Example 2. Consider the terms t = f (g b) e d and s = I a. Here s >ski t despite the
fact that s is syntactically smaller than t because s has a maximum reduction of 1 as
opposed to 0 of t.

Example 3. Consider terms t = f (I d) (Sx a b) and s = g (Sx (h d) b). The two terms
are comparable as the variable condition relates subterm Sx (h d) b in s to subterm
Sx a b in t. The unsafe combinator S and variable x are in the same position in each
subterm. As ‖t‖ > ‖s‖, t >ski s.

Example 4. Consider terms t = f (I d) (Sx a y) and s = g (Sx (h y) b). This is very
similar to the previous example, but in this case the terms are incomparable. Let s′ be
a name for the subterm (Sx (h y) b) in s and t′ a name for the subterm (Sx a y). The
variable y occurs in different positions in s′ and t′. Therefore, s′ cannot be related to t
by the variable condition and the two terms are incomparable.

Example 5. Consider terms t = f (x (g (K I a b))) and s = h (I a) (x c). The variable
condition holds between t and s by relating (x (g (K I a b))) to (x c). The combinator I
in s is not unsafe and therefore does not need to be related to a combinator in t.

Since ‖t‖ = 2 > ‖s‖ = 1, t >ski s. Intuitively, this is safe because a substitution
for x in t can duplicate (g (K I a b)) whose maximum reduction length is 2 whilst a
substitution for x in s can only duplicate c whose maximum reduction length is 0.

6 Extending to β-Reduction

The ordering that has been explored above orients all ground instances of combinator
equations left-to-right and as a result has the property that for ground terms t1 and t2 if
t1 −→+

w t2 then t1 >ski t2. It would be useful if an ordering with a similar property with
respect to β-reduction could be developed and this is what is explored in this section.
We first define some terminology that will be used throughout the section, then present
an ordering analogous to the >ski ordering.

Polymorphic types and type declarations are as defined previously. Below the set of
raw λ-terms is defined.

Terms T ::= x | f〈 τn 〉 |λx.t | t1τ1→τ2t2τ1
where x ∈ V , t, t1, t2 ∈ T , f ∈ Σ, f : Π αn .σ and τn are types

If x is of type τ and t is of type σ then the type of λx.t is τ → σ. The type of the
term f〈 τn 〉 is σ{αn → τn }. Variables that are bound by the λ binder are known as
bound variables and all other variables are free variables. A term that contains no type
variables or free term variables is known as a ground term. The consistent renaming
of a bound variable throughout a term is known as α-renaming. For example the term
λx.f x can be α-renamed to λy.f y. Raw λ-terms can be partitioned into equivalence
classes modulo α-renaming. These equivalence classes are known as λ-terms.

Positions over λ-terms are defined similarly to positions over combinatory terms
with the added definition pos(λx.t) = {ε} ∪ {1.p | p ∈ pos(t)}. First-order subterms
are defined exactly as before. However, stable subterms require redefining. Again, stable
subterms are a subset of first-order subterms. By definition, if p.2 ∈ pos(t) for some
term t, then the subterm at p.2 is first-order. The subterm is stable if head(t|p) is not a
λ-expression or head(t|p) = λ yn .t

′, head(t′) is not a λ-expression or bound variable
and t|p.2 is not amongst the first n arguments of head(t|p).

Beta-reduction is defined on λ-terms as follows. A term of the form (λx.t) t′ β-
reduces to t{x → t′} where the substitution is assumed to be capture avoiding by the
α-renaming of t where necessary. If term t β-reduces to t′, this is symbolised t −→β t

′.

By an overload of notation, ‖t‖ is used to denote the length of the longest β-
reduction from t. For typed λ-terms, β-reduction is terminating and confluent and a
maximal strategy is known [22].

6.1 Beta-compatible Ordering

The ordering first compares λ-terms by the length of the longest β-reduction and then
by the graceful higher-order KBO. We overload the translation JK to be a translation
from λ-terms to untyped terms. It replaces λ-binders by a unary function symbol lam
and replaces bound variables by the correct De Bruijn index. The use of De Bruijn
indices ensures that JK remains an injective function. The definition of type-1 subterms
requires updating as well. The translation of types is as given previously. The extended
term translation follows the definition.

Definition 7 (Type-1 term). Consider a term t of the form (λ yn .t
′) tn or x tn . If

there exists a position p such that t|p is a free variable, then t is a type-1 term.

JtK =

x t = x and x is free
dbi t is a bound variable with i binders

between this occurrence and its binder
xt t is a type-1 term
lam Jt′K if t = λx.t′

f J τn K if t = f〈 τn 〉
Jt1KJt2K if t = t1t2

Then for λ-terms, t and s, Let t′ = JtK and s′ = JsK. We have t >βkbo s if:

R1 ‖t′‖ > ‖s′‖ or,
R2 ‖t′‖ = ‖s′‖ and Jt′K >hb Js′K

The definition of β-reduction on untyped terms is the obvious one. Most of the
proofs follow almost exactly as in the combinatory case with the added complication
of having to deal with terms of the form λx.t when doing a case analysis on terms. We
therefore do not repeat them.

7 Conclusion and Discussion

We have presented an ordering that orients all ground instances of S, C, B, K and I
axioms left-to-right. The ordering enjoys many other useful properties such as stability
under substitution, compatibility with stable contexts, ground totality and transitivity. In
as yet unpublished work, we have used this ordering to parameterise a complete super-
position calculus for HOL [5]. Lack of full compatibility with context has not been an
obstacle. In the standard first-order proof of the completeness of superposition, compat-
ibility with contexts is used in model construction to rule out the need for superpostion

inferences beneath variables [18]. Thus, by utilising >ski, some superposition is re-
quired beneath variables. However, because terms with functional heads are compatible
with all contexts, such inference are quite restricted.

The >ski ordering presented here is able to compare non-ground terms that cannot
be compared by any ordering used to parameterise Bentkamp et al.’s lambda superpo-
sition calculus [3]. They define terms to be β-equivalence classes. Non-ground terms
are compared using a quasiorder, %, such that t % s iff for all grounding substitu-
tions θ, tθ � sθ. Consider terms t = x a b and s = x b a and grounding substitutions
θ1 = x→ λx y .f y x and θ2 = x→ λx y .f x y. By ground totality of � it must
be the case that either f a b � f b a or f b a � f a b. Without loss of generality as-
sume the first. Then, neither t % s nor s % t since tθ1 = f b a ≺ f a b = sθ1 and
tθ2 = f a b � f b a = sθ2.

The >ski ordering (or the >βkbo ordering) allows weak reduction (or β-reduction)
to be treated as part of the superposition calculus. This allows terms t and t′ such that
t −→+

w t′ (or t −→+
β t′) to be considered separate terms resulting in terms such as t

and s given above being comparable. Since ‖t‖ = ‖s‖, t and s are compared using >hb

with stability under substitution ensured by the stability under substitution of >hb.
Many of the definitions that have been provided here are conservative and can be

tightened to allow the comparison of a far larger class of non-ground terms without
losing stability under substitution. In further work, we hope to thoroughly explore such
refinements.

The definition of a stable subterm can be further sharpened to allow compatibility
with a greater number of contexts. We provide the intuitive idea. Consider the context
K (S []) s. This is not a stable context because the innermost head symbol to the hole
that is not a partially applied combinator is the fully applied K. However, for terms t
and t′ such that ‖t‖ > ‖t′‖, we must have that ‖K (S t) s‖ > ‖K (S t′) s‖ because the
terms t and t′ can never become applied on a longest reduction path. This suggests the
following improvement to the definition of instability.

Definition 8 (Stable Subterm). Let LPP(t, p) be a partial function that takes a term
t, a position p and returns the longest prefix p′ of p such that head(t|p′) is not a par-
tially applied combinator or a K applied to two arguments or an I applied to a single
argument if such a position exists. For a position p ∈ pos(t), p is a stable position in t
if LPP(t, p) is not defined or head(t|LPP(t,p)) is not a combinator. A stable subterm is
a subterm occurring at a stable position.

In future work, we plan to investigate improvements such as the above. However,
we feel that the ordering in the form presented here is a strong base for starting work
on a complete superposition calculus for HOL based on the combinatory calculus.

Acknowledgements Thanks to Jasmin Blanchette, Alexander Bentkamp and Petar
Vukmirović for many discussions on aspects of this research. We would also like to
thank reviewers of this paper, whose comments have done much to shape this paper.
The first author thanks the family of James Elson for funding his research.

References

1. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. Elsevier Science Pub-
lishers B.V., Amsterdam, Netherlands, 2nd edn. (1984)

2. Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: A transfinite Knuth–Bendix order for
lambda-free higher-order terms. In: de Moura, L. (ed.) CADE-26. LNCS, vol. 10395, pp.
432–453. Springer (2017)

3. Bentkamp, A., Blanchette, J.C., Tourret, S., Vukmirović, P., Waldmann, U.: Superposition
with lambdas. In: Fontaine, P. (ed.) CADE-27. LCNS, vol. 11716, pp. 55–73. Springer (2019)

4. Benzmüller, C., Sultana, N., Paulson, L.C., Theiß, F.: The higher-order prover Leo-II. Journal
of Automated Reasoning 55(4), 389–404 (2015). https://doi.org/10.1007/s10817-015-9348-
y

5. Bhayat, A., Reger, G.: A combinator-based superposition calculus for higher-
order logic (technical report). Technical report, University of Mancester (2020),
https://github.com/vprover/vampire_publications/blob/master/
paper_drafts/comb_sup_report.pdf

6. Blanchette, J.C., Waldmann, U., Wand, D.: A lambda-free higher-order recursive path or-
der. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 461–479.
Springer (2017)

7. Blanqui, F., Jouannaud, J.P., Rubio, A.: The computability path ordering: The end of
a quest. Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics) 5213 LNCS, 1–14 (2008).
https://doi.org/10.1007/978-3-540-87531-41

8. Bofill, M., Godoy, G., Nieuwenhuis, R., Rubio, A.: Paramodulation with non-monotonic
orderings. Proceedings - Symposium on Logic in Computer Science (08 1999)

9. Brown, C.E.: Satallax: An automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler,
U. (eds.) Automated Reasoning. pp. 111–117. Springer (2012)

10. Czajka, Ł., Kaliszyk, C.: Hammer for Coq: Automation for dependent type theory. Journal
of Automated Reasoning 61(1), 423–453 (Jun 2018)

11. Graf, P.: Substitution tree indexing, pp. 117–131. Springer Berlin Heidelberg, Berlin, Hei-
delberg (1995). https://doi.org/10.1007/3-540-59200-8 52, http://dx.doi.org/10.
1007/3-540-59200-8_52

12. Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators: An Introduction. Cambridge
University Press, New York, NY, USA, 2nd edn. (2008)

13. Jouannaud, J.P., Rubio, A.: Polymorphic Higher-Order Recursive Path Orderings. Journal of
the ACM 54(1) (2007). https://doi.org/10.1145/1206035.1206037

14. Kerber, M.: How to prove higher order theorems in first order logic. In: IJCAI. pp. 137–142
(01 1991)

15. Kop, C., van Raamsdonk, F.: A higher-order iterative path ordering. In: Logic for Program-
ming, Artificial Intelligence, and Reasoning. vol. 5330 LNCS, pp. 697–711. Springer (2008).
https://doi.org/10.1007/978-3-540-89439-1 48

16. Lindblad, F.: https://github.com/frelindb/agsyHOL, accessed: 25-09-2019
17. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. Journal of

Automated Reasoning 40(1), 35–60 (Jan 2008). https://doi.org/10.1007/s10817-007-9085-y,
https://doi.org/10.1007/s10817-007-9085-y

18. Nieuwenhuis, R., Rubio, A.: Handbook of Automated Reasoning, vol. 1, chap.
Paramodulation-Based Theorem Proving, pp. 371–443. Elsevier Press and MIT press (08
2001). https://doi.org/10.1016/B978-044450813-3/50009-6

19. Sekar, R., Ramakrishnan, I., Voronkov, A.: Term indexing. In: Robinson, A., Voronkov, A.
(eds.) Handbook of Automated Reasoning, vol. II, chap. 26, pp. 1853–1964. Elsevier Science
(2001)

https://doi.org/10.1007/s10817-015-9348-y
https://doi.org/10.1007/s10817-015-9348-y
https://github.com/vprover/vampire_publications/blob/master/paper_drafts/comb_sup_report.pdf
https://github.com/vprover/vampire_publications/blob/master/paper_drafts/comb_sup_report.pdf
https://doi.org/10.1007/978-3-540-87531-41
https://doi.org/10.1007/3-540-59200-8_52
http://dx.doi.org/10.1007/3-540-59200-8_52
http://dx.doi.org/10.1007/3-540-59200-8_52
https://doi.org/10.1145/1206035.1206037
https://doi.org/10.1007/978-3-540-89439-1_48
https://github.com/frelindb/agsyHOL
https://doi.org/10.1007/s10817-007-9085-y
https://doi.org/10.1007/s10817-007-9085-y
https://doi.org/10.1016/B978-044450813-3/50009-6

20. Steen, A.: Extensional Paramodulation for Higher-Order Logic and its Effective Implemen-
tation Leo-III. Ph.D. thesis, Freie Universität Berlin (2018)

21. Sultana, N., Blanchette, J.C., Paulson, L.C.: Leo-II and Satallax on the
Sledgehammer test bench. Journal of Applied Logic 11(1), 91 – 102 (2013).
https://doi.org/https://doi.org/10.1016/j.jal.2012.12.002

22. van Raamsdonk, F., Severi, P., Sørensen, M., Xi, H.: Perpetual reductions
in lambda calculus. Information and Computation 149(2), 173–225 (1999).
https://doi.org/10.1006/inco.1998.2750

https://doi.org/https://doi.org/10.1016/j.jal.2012.12.002
https://doi.org/10.1006/inco.1998.2750

	A Knuth-Bendix-Like Ordering for Orienting Combinator Equations (Technical Report)

