
EasyChair Preprint
№ 11312

Task Scheduling with Improved Particle Swarm
Optimization in Cloud Data Center

Yang Bi, Wenlong Ni, Yao Liu, Lingyue Lai and Xinyu Zhou

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 17, 2023

Task Scheduling with Improved Particle Swarm
Optimization in Cloud Data Center

Yang Bi1, Wenlong Ni1, Yao Liu1, Lingyue Lai1, and Xinyu Zhou1

School of Computer and Information Engineering, Jiangxi Normal University,
Nanchang, CHINA

{byang, wni, liuy, laily, xyzhou}@jxnu.edu.cn

Abstract. This paper proposes an improved particle swarm optimiza-
tion algorithm with simulated annealing (IPSO-SA) for the task schedul-
ing problem of cloud data center. The algorithm uses Tent chaotic map-
ping to make the initial population more evenly distributed. Secondly,
nonlinear adaptive inertia weights is incoporated to adjust optimization
seeking capabilities of particles in different iteration periods. Finally, the
Metropolis criterion in SA is used to generate perturbed particles, com-
bined with an modified equation for updating particles to avoid prema-
ture particle convergence. Comparative experimental results show that
the IPSO-SA algorithm improves 13.8% in convergence accuracy over the
standard PSO algorithm. The respective improvements over the other
two modified PSO are 15.2% and 9.1%.

Keywords: Cloud Data Center · Task Scheduling · Particle Swarm Op-
timization · Simulated Annealing.

1 Introduction

In cloud data centers, improving computing efficiency and reducing resource
costs is always a challenging problem. Due to the heterogeneity and dynamics of
cloud environments, resource allocation and task scheduling is considered as a NP
hard problem, which is a non-deterministic problem of polynomial complexity.
For such problems with long solution time and high complexity, it is intuitive
to use simulated annealing algorithm, genetic algorithm, ant colony algorithm,
particle swarm algorithm, etc. However, such algorithms may have the following
disadvantages like many parameters to adjust, high computational cost and hard
to implement, etc.

PSO originated from the research on the foraging behavior of birds, and was
first proposed by Dr. Eberhart and Dr. Kennedy [1]. The original purpose of
this algorithm is to achieve the study of complex social behavior by simulating
a simple social system [2]. After further research, it was found that the particle
swarm algorithm can be used to solve complex optimization problems. A particle
in the swarm is a candidate solution. Through the cooperation and information
sharing among individuals in the swarm, the optimal solution to the problem to
be optimized is found in the search space of a given dimension. PSO only has

2 Y. Bi et al.

three control parameters: inertia weight, cognitive acceleration coefficient, and
social acceleration coefficient. A small change in any of these three parameters
will bring about a difference in algorithm performance as shown in[3] and [4].

Although the PSO algorithm has good optimization performance, it still has
serious premature convergence problems, which leads to defects such as low con-
vergence accuracy. There are four main strategies to improve the standard par-
ticle swarm algorithm: modifying the control parameters of the particle swarm
algorithm, mixing the particle swarm algorithm with genetic algorithm , dif-
ferential evolution algorithm and other meta-heuristic algorithms, collaboration
and multi-swarm technology [5]. For the inertia weights in the particle swarm
algorithm, literature [6] proposed a method to represent inertia weights with
random values. Because in some applications, it is not easy to predict the re-
quired The size of the inertia weight, so this method is suitable for solving the
dynamic environment. [7] proposed a linearly changing inertial weight, which can
endow particles with the ability of individual optimization and collective opti-
mization in different iteration periods. For the acceleration coefficients in the
PSO, [8] proposed a hierarchical particle swarm algorithm with time-varying
acceleration coefficients, using the number of iterations Dynamically adjust the
particle swarm acceleration coefficient to improve the development and search
capabilities of particles in the population. Literature [9] uses a mixture of PSO
and genetic algorithms to solve multimodal problems. Literature [10] divides
the population into a master population and multiple subordinate populations,
constituting a multi-group cooperative particle swarm algorithm.

Based on the particle swarm algorithm and simulated annealing algorithm,
IPSO-SA is proposed in this paper to be used in cloud computing scenarios, with
a multi-objective optimization considering both cloud computing execution time
and resource cost. It is implemented from the following aspects:

1. The Tent chaotic map is used to initialize the particle swarm population to
improve the traversal of the population.

2. The inertia weights are adjusted nonliearly which can strengthen the opti-
mization ability of the particles in different iteration periods.

3. Hybrid simulated annealing algorithm is adopted, using the Metropolis cri-
terion to disturb the population, thus improving the particle swarm velocity
update equation to avoid particles falling into local optimal solutions.

2 Problem Description

The cloud computing task scheduling model can be abstracted as transferring a
large number of tasks to the data center and allocating them to different VMs
in the resource pool through task execution resource allocation strategies. An
appropriate allocation strategy can not only reduce the cost of cloud service
providers, but also improve user satisfaction by reducing waiting time. A mathe-
matical model for multi-objective optimization is established for task scheduling.

Task Scheduling with IPSO 3

2.1 System Model

A virtual machine (VM) must be deployed on a PM in the Data Center. In this
paper, we suppose that the number of VMs is n, VM = {vm1, vm2, vm3, . . . , vmn}.
The deployment and operation of each VM node is independent of each other.
The VM nodes also have resources such as CPU, memory, storage, GPU and
bandwidth. In this paper, we are mainly concerned with the computing and
bandwidth resources of VMs. For example, vmj =< VMej , V Mtj > (j =
1, 2, 3, . . . , n), where VMe and VMt are the computing power and bandwidth
resources.

Each task is assigned to a VM for processing. Task scheduling sends each
task to a selected VM for best performance. Assuming the total number of
pending tasks is k, so the set of tasks is T = {t1, t2, t3, . . . , tm}. In addition,
ti =< Tli, Tdi > (i = 1, 2, 3, . . . ,m). Where T l is the task length of ti, which
is proportional to the computation time of tasks. Td is the amount of data to
be transferred for ti, which is proportional to the transfer time of the task. Let
xij be a binary variable indicating whether ti is assigned on vmj , the definition
rules are as follows:

xij =

{
1 , ti assign to vmj ,
0 , other.

In the above equation, the constraint on xij is:

n∑
j=1

xij = 1.

2.2 Fitness Function

The optimization objective of this paper is to minimize task execution time and
execution cost. Therefore the total computation time, the total transmission
time, the maximum end time and the execution cost of the task need to be
defined. The details are as follows.

1. Total computation time of tasks. According to the allocation strategy, ti is
assigned to the vmj to perform computing tasks. Therefore, the computation
time of the task is defined as follows:

ETi =

n∑
j=1

xij ×
T li

VMej
. (1)

The total calculation time of a task is the sum of the time required to
complete the task calculation by assigning a single task to a VM, so it is
defined as follows:

ET =

m∑
i=1

ETi. (2)

Where, n is the total number of VMs and m is the total amount of tasks.
The following is similar and will not be repeatedly defined.

4 Y. Bi et al.

2. Total transfer time of tasks. Similar to the execution time, the transmission
time of task data is related to the bandwidth resource of the VM. Therefore,
the transmission time of the ti is defined as follows:

TTi =

n∑
j=1

xij ×
Tdi

VMtj
. (3)

The total task transfer time is the sum of all the individual task transfer
times in the task sequence and is therefore defined as follows:

TT =

m∑
i=1

TTi. (4)

3. The maximum ending time of tasks. The time required for a complete cloud
service is equal to the release time of the last VM in the cloud service, and
the release time of a VM is:

Tj =

m∑
i=1

xij ×
(

TLi

VMej
+

Tdi
VMtj

)
, (j = 1, 2, 3 . . . , n). (5)

Therefore, the maximum end time of the cloud service is:

T = max (T1, T2, T3, . . . , Tn) . (6)

4. Resource Occupation Cost. Since the task set is accepted by the virtual node,
the resource occupation cost is generated, so the following equation is de-
fined:

C = (ET + TT)× q. (7)
The equation, q is the cost coefficient of cloud service per unit time.

Based on the above optimization objectives and problem description, the
adaptation function constructed in this paper is as follows.

F = α1f1(x) + α2f2(x), (8)
where f1(x) is the minimized task execution time, and f2(x) is the minimized
resource cost, described as follows:

f1(x) = min(T), f2(x) = min(C). (9)

Furthermore, in equation (8), α1 and α2 are the weight coefficients of the ob-
jective function. The difference between the weight coefficients determines the
optimization focus of the resource allocation strategies.

3 Proposed IPSO-SA Algorithm

Based on PSO, this paper proposes IPSO-SA. This section is mainly concerned
with the encoding and decoding of particles, and three major improvement
strategies. These are Tent mapping initial population, non-linear dynamic adap-
tive inertia weights, and hybrid simulated annealing algorithm to improve the
particle swarm update formulation, respectively.

Task Scheduling with IPSO 5

3.1 Encoder and Decoder

Coding is used to map the position of particles to the solution space. In this
paper, continuous position information is realized through the principle of min-
imum position (SPV) mentioned in [11], which assumes that the position infor-
mation of the generation i particle is:

Xi = (x1, x2, . . . , xn) .

The particles encoded using SPV is:

⌊|Xi|⌋ = (⌊|x1|⌋ , ⌊|x2|⌋ , . . . , ⌊|xn|⌋) .

For example, suppose there are 10 tasks are assigned to 5 VMs for processing.
If the position information of the particle d in the iteration i is {2.34, 0.56,−4.3, 1.2,
−1.56, 3.16, 4.56,−0.13, 2.09,−1.3}, the encoded position information is {2, 0, 4, 1,
1, 3, 4, 0, 2, 1}, and the corresponding allocation strategy is shown in the Table
1.

Table 1. Task scheduling strategy.

TaskID 1 2 3 4 5 6 7 8 9 10
VMID 2 0 2 1 1 3 4 0 2 1

3.2 Algorithm Improvements

The standard PSO algorithm defines the equation for updating the velocity and
position of population particles [1]. Particle i updates its velocity and position
according to equation (10) and (11) in the t+ 1 iteration.

vt+1
in = ωvtin + c1 × r1 ×

(
pin − xt

in

)
+ c2 × r2 ×

(
gin − xt

in

)
, (10)

xt+1
in = xt

in + vt+1
in . (11)

Where c1 and c2 are the cognitive acceleration coefficient and social acceler-
ation coefficient, and r1 and r2 are two uniform random values generated within
[0, 1] interval. pin is the individual optimal value of the current particle, and gin
is the overall optimal value of the population where the particle is located.

In the cloud scenario, PSO algorithm has the defects of unreasonable popu-
lation initialization, easy convergence and premature, low convergence accuracy,
and easy to fall into individual optimal solution [12]. This paper improves from
the following aspects.

6 Y. Bi et al.

1. Tent Map Initialization Population. In the initial stage of PSO, the usual way
is to use random functions to generate the initial information of particles.
However, in the cloud scenario, it is necessary to use each VM as evenly as
possible. At this time, the above method becomes less applicable. Therefore,
in this paper, tent map is used to initialize the position and velocity of
particles, as described in the following equation:

xn+1 =

{ xn

α , (0 ≤ xn < α) ,
1−xn

1−α , (α < xn ≤ 1) .

Figure 1 shows the chaos values generated by the Tent Map. As can be seen
from the figure, the sequence generated by the Tent Map is well distributed
and random.

Fig. 1. Tent Chaos Map Chaos Value Distribution.

2. Inertial Weights. The ω in the PSO algorithm is called the inertia weight
and is usually set to a fixed value. But, the results of the literature [12] show
that when the number of iterations increases, taking a fixed-value solution
leads to an amplification of many of the details of the problem that need to
be solved. In addition, [12] indicates that, when 0 < ω < 1, particles grad-
ually converge with the increase of iteration times. Larger ω are beneficial
for finding the overall optimal solution. Smaller ω are beneficial for finding
individual optimal solutions.
According to the fitness function in this paper, we can know that the opti-
mization problem in this paper belongs to the minimum value problem, so
ω should gradually decrease with the increase of the number of iterations.
Based on the above theory, this article adopts a nonlinear decreasing func-
tion to optimize ω. The value of ω can be changed adaptively during the
iteration process. The improved nonlinear adaptive inertia weight iteration

Task Scheduling with IPSO 7

equation is as follows.

ω = ωmin + (ωmax − ωmin)× e(−
2×t

Tmax
). (12)

In the equation(12), ωmax is the maximum inertia weight. ωmin is the min-
imum inertia weight. t is the current iteration number, and Tmax is the
maximum iteration number.

3. Metropolis Criterion. The Metropolis criterion is one of the core factor of
SA algorithms [13], which does not use completely deterministic rules but
chooses to accept new states with probability. In the t-th iteration, the al-
gorithm will randomly generate a new solution g′in in the neighborhood of
all optimal gin obtained by the particle swarm algorithm, and then deter-
mine whether to accept the solution through the Metropolis criterion. The
Metropolis criteria are as follows:

∆F = F (g′in)− F (gin) , (13)

p (gin → g′in) =

{
1 , ∆F < 0,

e−
∆F
T , ∆F > 0.

(14)

Where ∆F is the difference value of fitness function, T is the current tem-
perature, which is changed according to the following equation.

T0 = − F (g0n)

log(0.2)
,

T = K × T0.

(15)

Where T0 is the initial temperature, K is the cooling coefficient. At this
point, equation(10) is improved to (15). Using the Metropolis criterion, we
improve equation 11 and 11 as follows.

vt+1
in = ω×vtin+c1×r1×

(
pin − xt

in

)
+c2×r2×

(
gin − xt

in

)
+c3×r3×

(
g′in − xt

in

)
.

(16)
Where, c1, c2 and c3 are the particle acceleration coefficients. The constraint
conditions for using new solutions generated within the neighborhood as
perturbed particles are:

p (gin → g′in) > rand(0, 1).

In addition, a contraction factor is introduced to ensure the contractility of
the population particles, and the particle position is updated according to
equation(17).

χ =
2∣∣2− C −

√
C2 − 4× C

∣∣ ,
xt+1
in = xt

in + χvt+1
in .

(17)

8 Y. Bi et al.

4 Simulation Results

In this paper the CloudSim software is adopted for simulation experiments, which
is developed by [14]. Table 2 shows the experimental parameter configuration.

Table 2. VMs configuration table

Parameter Value
Processing speed of VMs/ MIPS [200,600]

Bandwidth of VMs/ Mbps [1000,2500]
Memory of VMs/ GB 1.70

Number of VMs 20
Number of tasks 200

Task length [25000,250000]
Task data volume [100,600]

In addition, the data for the VMs and tasks to be used in this paper were
randomly generated based on the Table 2.

This paper uses the standard PSO, IPSO_1 in [8] and IPSO_2 [15], for
comparison experiments with the proposed IPSO-SA. The strategy in [8] uses
an adaptive acceleration factor, and [15] uses an inertial weight curve descent
strategy. The population size is set to 25 and the number of iterations is 1000
for all the above four algorithms. The values of other parameters are referred to
Table 3.

Table 3. Algorithm parameter

PSO inertia weight 0.9
learning factor c1 = c2 = 2.05

IPSO_1 inertia weight 0.9
learning factor cmax = 2.5, cmin = 0.5

IPSO_2
inertia weight ωmax = 0.9, ωmin = 0.2
learning factor c1 = c2 = 2.05

Inertia Curve Parameters -0.95

IPSO-SA

inertia weight ωmax = 0.9, ωmin = 0.2
learning factor c1 = c2 = 2.05, c3 = 0.5

The initial temperature T = 1000000
cooling coefficient K = 0.998

The comparison experiments are performed several times under the above
parameter conditions. The algorithm performance comparison is shown in Figure
2.

Task Scheduling with IPSO 9

Fig. 2. Comparison of algorithm performance.

Fifty comparison experiments were conducted and the convergence accuracy
of each algorithm is shown in the Table 4.

Table 4. Comparison of algorithm convergence accuracy

Algorithm Maximum Fitness Minimum Fitness Average Fitness
PSO 31969.61723 29618.40511 31128.05389

IPSO_1 32276.67126 31023.48934 31635.17231
IPSO_2 31776.67126 27705.92521 29512.43004
IPSO-SA 29749.45768 23275.83437 26819.8504

According to Equation 8, the optimisation objective of this paper lies in
minimising the execution time and execution resources of the task. Therefore,
the smaller the fitness value, the better the scheduling strategy.

Based on the results of the above-mentioned multiple comparison experi-
ments, the IPSO-SA algorithm, after introducing simulated annealing perturbed
particles, better avoids the defects of premature convergence of the PSO. In
terms of algorithm convergence accuracy, IPSO-SA improves 13.8% over PSO.
It is 15.2% better than IPSO_1. The improvement over IPSO_2 is 9.1%. Figure
3 shows a comparison of the average fitness values of the four algorithms.

10 Y. Bi et al.

Fig. 3. Comparison of average fitness values.

Combining the analysis results in Figure 2 and Table 4, it can be concluded
that the IPSO-SA algorithm have better convergence accuracy and at the same
time, and reducing the probability of premature convergence.

5 Conclusion

In this paper, we propose the improved PSO algorithm, which is used to solve
the task scheduling problem in cloud data centers. Firstly, the initial population
is made ergodic by Tent chaotic mapping. Then, construct non-linear adaptive
functions that dynamically adjust the particle’s ability to find the best at dif-
ferent times. Finally, the Metropolis criterion in SA was introduced to generate
perturbed particles, using an improved velocity and position update formulation
to reduce the probability of premature convergence of the algorithm. Compar-
ative experimental results show that the IPSO-SA proposed in this paper has
high convergence accuracy, and the particles do not remain in a locally optimal
solution for long.

In future work, we will consider improving the convergence speed of the algo-
rithm as a new optimization goal. Meanwhile, we consider applying the swarm
intelligence algorithm to more application scenarios.

Task Scheduling with IPSO 11

References

1. Kennedy, James, and Russell Eberhart. "Particle swarm optimization." Proceed-
ings of ICNN’95-international conference on neural networks. Vol. 4. IEEE, 1995.

2. Garnier, Simon, Jacques Gautrais, and Guy Theraulaz. "The biological principles
of swarm intelligence." Swarm intelligence 1 (2007): 3-31.

3. Eltamaly, Ali M. "A novel strategy for optimal PSO control parameters determi-
nation for PV energy systems." Sustainability 13.2 (2021): 1008.

4. Harrison, Kyle Robert, Andries P. Engelbrecht, and Beatrice M. Ombuki-Berman.
"Optimal parameter regions and the time-dependence of control parameter values
for the particle swarm optimization algorithm." Swarm and evolutionary compu-
tation 41 (2018): 20-35.

5. Shami, Tareq M., et al. "Particle swarm optimization: A comprehensive survey."
IEEE Access 10 (2022): 10031-10061.

6. Li, Mi, et al. "A multi-information fusion “triple variables with iteration” inertia
weight PSO algorithm and its application." Applied Soft Computing 84 (2019):
105677.

7. Shi, Yuhui, and Russell C. Eberhart. "Empirical study of particle swarm optimiza-
tion." Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat.
No. 99TH8406). Vol. 3. IEEE, 1999.

8. Ratnaweera, Asanga, Saman K. Halgamuge, and Harry C. Watson. "Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration coefficients."
IEEE Transactions on evolutionary computation 8.3 (2004): 240-255.

9. Kao, Yi-Tung, and Erwie Zahara. "A hybrid genetic algorithm and particle swarm
optimization for multimodal functions." Applied soft computing 8.2 (2008): 849-
857.

10. Niu, Ben, et al. "MCPSO: A multi-swarm cooperative particle swarm optimizer."
Applied Mathematics and computation 185.2 (2007): 1050-1062.

11. Alguliyev, Rasim M., Yadigar N. Imamverdiyev, and Fargana J. Abdullayeva.
"PSO-based load balancing method in cloud computing." Automatic Control and
Computer Sciences 53 (2019): 45-55.

12. Parsopoulos, K. E., et al. "Improving particle swarm optimizer by function “stretch-
ing” ”, Nonconvex Optimization and Applications, vol. 54, ch. 3." (2001): 445-457.

13. Van Laarhoven, Peter JM, et al. Simulated annealing. Springer Netherlands, 1987.
14. Calheiros, Rodrigo N., et al. "CloudSim: a toolkit for modeling and simulation of

cloud computing environments and evaluation of resource provisioning algorithms."
Software: Practice and experience 41.1 (2011): 23-50.

15. Lei, Kaiyou, Yuhui Qiu, and Yi He. "A new adaptive well-chosen inertia weight
strategy to automatically harmonize global and local search ability in particle
swarm optimization." 2006 1st international symposium on systems and control in
aerospace and astronautics. IEEE, 2006.

