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ABSTRACT
In the era of Internet of things, access points will be deployed everywhere. The
wireless signals offered by these access points can be used for more than just Internet
connectivity. In fact, the human movement causes Doppler shifts in the received
wireless signals. By combining signal processing techniques and machine learning,
it is possible to recognize human activity from Wi-Fi signals. This paper builds
on these ideas and develops a human activity recognition system that comprises
two parts: radio-frequency sensing and machine learning. In the radio-frequency
sensing part, we record the channel transfer function of an indoor environment in
the presence of a participant performing three activities: walking, falling, and picking
up an object. Using signal processing techniques, we estimate the mean Doppler shift
of the channel, which contains the fingerprint of the user activity. The mean Doppler
shift is used by a classifier to determine the type of performed activity. We assess
the activity recognition performance of three classification algorithms: cubic support
vector machine, K-nearest neighbor, and linear discriminant analysis. Our analysis
shows that the cubic support vector machine, linear discriminant analysis, and K-
nearest neighbor algorithms achieve an overall accuracy of 99.5%, 97.3%, and 95.1%,
respectively.
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1. Introduction

With the rapid development of the Internet of things (IoT), various types of sensors
have been embedded in indoor and outdoor environments. This offers the opportunity
to collect useful data that can be utilized in environment monitoring, smart city, and
human activity recognition (HAR). Traditional HAR techniques are mainly based
on camera [1] or wearable devices [2]. However, with the widespread deployment of
Wi-Fi access points, device-free HAR has attracted a lot of attention. As opposed
to camera-based HAR, Wi-Fi-based HAR does not violate user’s privacy. Besides,
Wi-Fi-based HAR does not require the user to wear any sensing device, which allows
avoiding user discomfort associated with wearable devices.

In Wi-Fi-based activity recognition systems, an electromagnetic wave emitted by the
transmitter is reflected by the objects in the environment before reaching the receiver.
If a person is moving in the vicinity of the transmitter and the receiver, this movement
causes a Doppler shift in the received radio-frequency (RF) signal. The pattern of this
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Doppler shift varies depending on the type of activity. Thus, it is possible to recognize
the user activity based on the received RF signal. Wi-Fi-based HAR either uses the
channel state information (CSI) [3–5] or the radio signal strength indicator (RSSI) [6]
for activity recognition. CSI-based HAR systems have a better accuracy in recognizing
human activity compared to RRSI-based HAR systems. The authors of [7] developed
a software tool for gathering CSI from Wi-Fi data packets by means of a network
interface card (NIC). The authors of [3], [4], and [5] utilize deep learning algorithms
for activity recognition based on CSI data and achieve an overall recognition accuracy
of 96%, 97.4%, and 97.6%, respectively.

In this paper, we use the software tool proposed in [7] to build a testbed for HAR
using two laptops. One laptop acts as a transmitter, while the second laptop acts as a
receiver. Seven participants are asked to perform three activities (walking, falling, and
picking up an object) inside a 16 square meter room. The CSI data is collected while the
participants carry out their activities. Using signal processing techniques, we estimate
the time-variant mean Doppler shift (MDS) from the recorded CSI data. Subsequently,
time and frequency domain features are extracted from the MDS and provided to a
classification algorithm. This classifier must determine the type of performed activity.
We test the performance of three classification algorithms: cubic support vector machine
(CSVM), K-nearest neighbor (KNN), and linear discriminant analysis (LDA). Our
results show that the CSVM, LDA, and KNN algorithms achieve an overall recognition
accuracy of 99.5%, 97.3%, and 95.1%, respectively. With these results, we outperform
most of the existing activity recognition systems in terms of overall accuracy.

Note that this is the first work in the literature that uses the MDS for activity
recognition. The MDS approach makes our system robust to changes in the environment.
In other words, if the position of the fixed scatterers (e.g., furniture, walls) is modified,
this has no impact on the recognition accuracy. Moreover, our investigation reveals that
our HAR system can maintain a high recognition accuracy even if the activity is carried
out at a distance of 4 meters from the transmitter and receiver. Note that in most
existing studies, the activity is performed very close (one meter) to the transmitter and
receiver to achieve a recognition accuracy of over 90%. It is reported in [8] that the
recognition accuracy drops below 85% if the participant is at a distance of 3 meters
from the transmitter and receiver.

The rest of the paper is organized as follows. Section 2 provides an overview of the
proposed activity recognition system and its building components. In Section 3, we
describe the different data pre-processing steps that are applied to the collected CSI
data to obtain the MDS. In Section 4, we assess the performance of the proposed HAR
system and discuss the obtained results. Finally, Section 5 offers concluding remarks.

2. Overview of the CSI-Based HAR System

An overview of the CSI-based HAR system is provided in Fig. 1. The HAR system
uses the CSI data of a Wi-Fi link to recognize human activities. The HAR system
consists of two main stages: RF sensing and machine learning as shown in Fig. 1. In
the RF sensing stage, a single person carries out an activity in an indoor environment.
The RF data is collected by involving seven participants performing three different
activities: walking, falling, and picking up an object. During the activity, the person’s
body parts move and cause a Doppler shift in the RF signal. The pattern of this
Doppler shift varies from one activity to another and can thus be used for activity
recognition. To capture this phenomenon, we use two laptops acting as a transmitter
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and receiver. Instead of the built-in RF antennas of the laptops, we use RF cables
and connected external omni-directional antennas to the NICs of the laptops. A single
transmit antenna AT injects 1000 data packets per second in the wireless medium and
two receive antennas AR1 and AR2 collect the injected packets. All the antennas are
attached to the room ceiling. We use the software tool proposed in [7] to capture the
Wi-Fi CSI from the received packets, while the users perform different activities.

The CSI data recorded during RF sensing is then transferred to the machine learning
part. Using signal processing algorithms, the CSI data is calibrated, filtered, denoised,
and the MDS associated with each CSI sample is computed. The MDS contains the
fingerprints of the user activity and its pattern varies as the activity changes. The
MDS is considered as a time-series from which we extract time and frequency domain
features that form the feature vector. Based on this vector, the classification algorithm
must determine the type of performed activity from three possible activities: walking,
falling, and picking up an object (see Fig. 1).

Figure 1. Architecture of the HAR system.

3. Data Pre-Processing: From CSI Data to MDS

The transmitter laptop Tx sends 1000 data packets per second in the wireless medium.
These packets are transformed into an electromagnetic wave by the transmit antenna
AT . This wave travels in the indoor environment and is reflected by fixed (walls and
furniture) and moving (body parts of the moving person) objects before arriving at the
receive antennas AR1 and AR2 of the receiver laptop Rx. To capture the CSI of the
received data packets, we use the software tool developed in [7]. The CSI data is an
NTx
×NRx

×K matrix, where NTx
is the number of transmit antennas, NRx

denotes
the number of receive antennas, and K stands for the number of orthogonal frequency
division multiplexing (OFDM) subcarriers.

In our measurement campaign, we have one transmit antenna (NTx
= 1), two receive

antennas (NRx
= 2), and 30 OFDM subcarriers (K = 30). The symbol f ′k refers to

the carrier frequency of the kth OFDM subcarrier. We denote the elements of the CSI
matrix by Hi,j(f

′
k, t), where the pair (i, j) indicates the indices of the transmit and

receive antenna, respectively. Each element Hi,j(f
′
k, t) of the CSI matrix is known as a

CSI stream. The link between the ith transmit antenna and the jth receive antenna is
characterized by its channel transfer function (CTF) Hi,j(f

′, t). Thus, the CSI stream
Hi,j(f

′
k, t) is a discrete version of the CTF Hi,j(f

′, t) sampled at frequency f ′k.
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In our measurement campaign, the distance between the moving person and the
antennas is short (less than 4 meters), which makes the angles of departure and arrival
time variant. Besides, the speed of motion of different body parts is also time variant.
This makes the underlying fading channel non-stationary, which implies that both the
CTF and the CSI stream are non-stationary. Therefore, a time-frequency analysis tool
such as the spectrogram is needed to analyse the behavior of the fading and characterize
the fingerprint related to various user activities.

The spectrogram SHk
(f, t) of the CSI stream Hi,j(f

′
k, t) is obtained in two steps.

First, we compute the short-time Fourier transform (STFT) XHk
(f, t) of the CSI

stream Hi,j(f
′
k, t)

XHk
(f, t) =

∞∫
−∞

Hi,j(f
′
k, τ)w(τ − t)e−j2πfτdτ (1)

where τ stands for the running time, t is the local time, and w(t) is a sliding window. In
our case, we use a Gaussian window function [9, Eq. (2.3.1)]. Second, the spectrogram

SHk
(f, t) can be computed as SHk

(f, t) = |XHk
(f, t)|2. The MDS B

(1)
Hk

(t) can be
determined using the spectrogram as follows

B
(1)
Hk

(t) =

∞∫
−∞

fSHk
(f, t)df

∞∫
−∞

SHk
(f, t)df

. (2)

Since we use a commercial Wi-Fi NIC card for data acquisition, which measures the
channel for each received data packet, the collected data suffers from several sources
of error, such as noise, carrier frequency offset and sampling frequency offset [10]. To
mitigate these errors, we use various signal processing algorithms for data calibration,
filtering, and denoising. This improves the quality of the estimated MDS. Note that
a poor estimation of the MDS leads to a low accuracy in activity recognition. For
each MDS sample, we extract a feature vector that is provided to the classification
algorithm. The latter must determine the type of activity based on the feature vector.

4. Experimental Results

In this section, we assess the performance of the proposed activity recognition system.
First, the data is divided into training and test data sets representing 70% and 30%
of the total data, respectively. A training example consists of the features extracted
from a given MDS sample together with a label, which indicates the type of activity
associated with the considered MDS sample. During the training phase, the classifier is
exposed to labeled training data and learns the pattern associated with each activity.
At the end of the training phase, the internal parameters of the classifier are tuned
such that the trained algorithm can distinguish various activities with high accuracy.
Subsequently, the performance of the trained classifier is evaluated using the test data
set.

In our study, we compare the performance of three classification algorithms: CSVM,
LDA, and KNN. The obtained results are illustrated in Table 1. This table shows that
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the CSVM algorithm achieves the best overall performance with an activity recognition
accuracy of 99.5%, compared to 95.1% for KNN, and 97.3% for LDA. Table 1 provides
the classification recall and precision of each algorithm for each activity. Note that
the precision and the recall of the classification have two different meanings. The
classification recall focuses on the actual activity and quantifies the percentage of
successful classifications out of the actual samples belonging to a particular class. In
contrast, the classification precision focuses on the predicted activity and indicates the
percentage of correct classifications out of the samples predicted to belong to a certain
activity. For instance, the classification recall for the activity falling for the CSVM
algorithm is 100%. This implies that all the actual falls were correctly classified by
CSVM. Whereas the classification precision of falling is 98.7% for CSVM, which means
that 1.3% of the predicted falls are actually non-falling events.

Table 1. Performance of the classification algorithms KNN, LDA, and CSVM in terms of activity recognition.

Algorithms
KNN LDA CSVM

Overall Accuracy % 95.1 97.3 99.5

Recall %
Walking 98.4 93.7 98.4
Falling 89.7 98.7 100

Picking up an object 100 100 100

Precision %
Walking 93.9 98.3 100
Falling 98.6 95.1 98.7

Picking up an object 91.3 100 100

The classification recall of the KNN classifier for the activities walking, falling, and
picking up an object is equal to 98.4%, 89.7%, and 100%, respectively. Whereas for the
LDA algorithm, the classification recall is 93.7%, 98.7%, and 100% for the activities
walking, falling, and picking up an object, respectively. The CSVM algorithm reaches
100% recall for the activities falling and picking up objects and 98.4% recall for walking.
The classification precision of the KNN classifier for the activities walking, falling, and
picking up an object is equal to 93.9%, 98.6%, and 91.3%, respectively. While for the
LDA algorithm, the classification precision is 98.3%, 95.1%, and 100% for the activities
walking, falling, and picking up an object, respectively. The CSVM algorithm reaches
100% precision for the activities walking and picking up objects and 98.7% precision
for falling.

5. Conclusion

In this paper, we have developed a HAR system, which consists of two building
components: RF sensing and machine learning. The RF sensing component is a testbed
used to collect RF data of indoor channels, while a human participant carries out
three activities (walking, falling, and picking up an object). This RF testbed comprises
two laptops acting as a transmitter and receiver. The transmitter laptop sends 1000
packets per second. At the receiver laptop, a software tool captures the CSI data in
each received packet. This CSI data is a discrete version of the CTF sampled at 30
frequencies. The CSI data is collected from seven participants. Using signal processing
algorithms, we reduce the noise in the CSI data and estimate the MDS associated
with each CSI sample. A feature extraction algorithm is applied to each MDS sample
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to extract a feature vector. The data is then split into training and test data. The
training data contains both the feature vector and a label indicating the type of the
performed activity. We adopt a supervised learning approach, where the classifier is
trained using the training data and then its performance is assessed using the test
data. We evaluate the performance of three classification algorithms: CSVM, LDA,
and KNN. Our experimental results show that the CSVM algorithm achieves the best
performance with an overall accuracy of 99.5%, while LDA and KNN have an overall
accuracy of 97.3% and 95.1%, respectively.
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