E EasyChair Preprint
 № 9446

On Robins Inequality for Positive Integers and Related Bounds

Emmanuel Elima

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

ON ROBINS INEQUALITY FOR POSITIVE INTEGERS AND RELATED BOUNDS

EMMANUEL ELIMA

Abstract

Let n be a positive integer. We use known estimates of some arithmetic functions to derive lower bounds of n for which Robin's inequality holds.

1. Introduction and Results

Let n be a positive integer with sum of divisor function $\sigma(n):=\sum_{d \mid n} d$. Robins inequality is the inequality

$$
\begin{equation*}
\sigma(n)<e^{\gamma} n \log \log n \tag{1.1}
\end{equation*}
$$

where $\gamma=0.577 \ldots$ is the Euler-Mascheroni constant. Robin [1] proved that the Riemann Hypothesis is true if and only if inequality (1.1) holds for all $n>5041$. Inequality (1.1) is known to hold for a few families of integers but the general case still remains an open problem. In the case of t-free integers, Choie et al. [2] proved that if n does not satisfy (1.1), then it must be even, neither square free nor square full and divisible by a fifth power of a prime. Their result has ever since been improved with Axler [3] recently proving that (1.1) holds for every 21 -free integer n. As a consequence, the following equivalence of the Riemann hypothesis was formulated.

Proposition 1.1. [See Corollary 2.5 in [3].]
The Riemann hypothesis is true if and only if Robin's inequality (1.1) holds for every 21 -full integer n.

We contribute a partial result to Proposition 1.1 by proving a new family of 21 -full integers for which inequality (1.1) holds as stated below.

Theorem 1.2. Let n be a t-full integer with k distinct prime divisors. Inequality (1.1) holds for all $t>0.44 k \log (k \log k)+0.49 k+1$.

For the case of bounds, Ramanujan proved that Robin's inequality holds for all sufficiently large values of n. We refine this result by proving the following lower bound for n for which inequality (1.1) holds.

Theorem 1.3. Let n be a positive integer wuth k distinct prime divisors. Then inequality (1.1) holds for all n satisfying $\log p_{k}\left(1+\frac{1}{\log ^{2} p_{k}}\right)<\log \log n$, where p_{k} is the $k^{\text {th }}$ prime.

In the case of distinct prime divisors, we prove the following trivial lower bound for k.
Lemma 1.4. Let n be a positive integer with k distinct prime divisors. Then inequality (1.1) holds for all $k \leq 12$.

Proof. We consider n to be 21-full since Proposition 1.1 implies inequality (1.1) holds for all 21 -free integers. If n is 21 -full, then there exists a prime divisor q of n such that q^{21} divides n. Thus $n \geq 2^{21} \prod_{i=2}^{k} p_{i}$. Calculations show that the inequality

$$
\begin{equation*}
\frac{\sigma(n)}{n}<\prod_{i=1}^{k} \frac{p_{i}}{p_{i}-1}<\log \log \left(2^{21} \prod_{i=2}^{k} p_{i}\right) \leq \log \log n \tag{1.2}
\end{equation*}
$$

holds for all $k \leq 12$, where the first inequality in (1.2) follows from inequality (2.2).

As a consequence of Theorem 1.3 and Lemma 1.4, we prove the following explicit upper bound for integers that do not satisfy Robin's inequality.

Theorem 1.5. Let n be a positive integer with k distinct prime divisors. If n does not satisfy inequality (1.1), then $n \leq(k \log k)^{1.31 k}$.

2. Proof of Theorem 1.3

We can write $n=\prod_{i=1}^{k} q_{i}^{\alpha_{i}}$, where q_{i} are distinct primes and $\alpha_{i} \in \mathbb{Z}^{+}$. We notice that

$$
\begin{equation*}
\frac{\sigma(n)}{n}=\prod_{i=1}^{k} \frac{q_{i}}{q_{i}-1}\left(1-\frac{1}{q_{i}^{\alpha_{i}+1}}\right)<\prod_{i=1}^{k} \frac{q_{i}}{q_{i}-1} . \tag{2.1}
\end{equation*}
$$

Since the sequence $\left\{\frac{p_{i}}{p_{i}-1}\right\}$ over the primes is strictly decreasing, we have $\prod_{i=1}^{k} \frac{q_{i}}{q_{i}-1}<\prod_{i=1}^{k} \frac{p_{i}}{p_{i}-1}$. Thus (2.1) becomes

$$
\begin{equation*}
\frac{\sigma(n)}{n}<\prod_{i=1}^{k} \frac{p_{i}}{p_{i}-1}<e^{\gamma} \log p_{k}\left(1+\frac{1}{\log ^{2} p_{k}}\right) \tag{2.2}
\end{equation*}
$$

where the last inequality in (2.2) follows from Corollary 1 in [4]. By hypothesis, we have

$$
\begin{equation*}
e^{\gamma}\left(1+\frac{1}{\log ^{2} p_{k}}\right)<e^{\gamma} \log \log n \tag{2.3}
\end{equation*}
$$

Combining (2.2) and (2.3) completes the proof.

3. Proof of Theorem 1.5

Proof. We proceed by proving that inequality (1.1) holds for all $n>(k \log k)^{1.31 k}$. Suppose $n>(k \log k)^{1.31 k}$. The case $k \leq 12$ trivially follows from Lemma 1.4. For the case $k>12$, we prove that

$$
\begin{equation*}
\log p_{k}\left(1+\frac{1}{\log ^{2} p_{k}}\right)<\log \log n \tag{3.1}
\end{equation*}
$$

from which Theorem 1.3 implies inequality (1.1). By taking exponent on both sides, inequality (3.1) is equivalent to

$$
\begin{equation*}
p_{k} \exp \left(\frac{1}{\log p_{k}}\right)<\log n . \tag{3.2}
\end{equation*}
$$

We have $p_{k} \geq p_{13}=41$, from which it follows that $\exp \left(\frac{1}{\log p_{k}}\right)<1.31$.
Inequality (3.2) becomes

$$
\begin{equation*}
p_{k} \exp \left(\frac{1}{\log p_{k}}\right)<1.3 p_{k}<1.31 k \log (k \log k)<\log n . \tag{3.3}
\end{equation*}
$$

Where the second inequality in (3.3) follows from the fact that $p_{k}<k \log (k \log k)$ (See equation 3.13 in [4]) and the last inequality in (3.3) follows by hypothesis.

We have proved that inequality (3.1) holds for all $n>(k \log k)^{1.31 k}$, hence by Theorem 1.3, inequality (1.1) must hold.

4. Proof of Theorem 1.2

Proof. We consider the case $k>12$ since the case $k \leq 12$ follows from Lemma 1.4.
Suppose n is a t-full integer, then $n \geq 2^{t-1} \prod_{i=1}^{k} p_{i}$, where p_{i} is the $i^{t h}$ prime.
Let $\vartheta\left(p_{k}\right)=\sum_{i=1}^{k} \log p_{i}$. We have

$$
\begin{equation*}
\log n \geq(t-1) \log 2+\vartheta\left(p_{k}\right)>(t-1) \log 2+k \log (k \log k)-k, \tag{4.1}
\end{equation*}
$$

where the last inequality in (4.1) follows from $\vartheta\left(p_{k}\right)>k \log (k \log k)-k$. (See Proposition 5.1 in [5]).
From (3.3), we have

$$
\begin{equation*}
p_{k} \exp \left(\frac{1}{\log p_{k}}\right)<1.31 k \log (k \log k) . \tag{4.2}
\end{equation*}
$$

If the inequality

$$
\begin{equation*}
1.31 k \log (k \log k)<(t-1) \log 2+k \log (k \log k)-k \tag{4.3}
\end{equation*}
$$

holds, then it follows from (4.1) and (4.2) that $\log p_{k}\left(1+\frac{1}{\log ^{2} p_{k}}\right)<\log \log n$ from which Theorem 1.3 implies that inequality (1.1) holds. But inequality (4.3) can be written as $t>$ $0.44 k \log (k \log k)+0.49 k+1$ which then concludes the proof.

References

[1] Robin, G. (1984). Grandes valeurs de la fonction somme des diviseurs et hypothese de Riemann. J. Math. pures appl, 63(2), 187-213.
[2] Choie, Y., Lichiardopol, N., Moree, P., \& Sol, P. (2007). On Robins criterion for the Riemann hypothesis. Journal de thorie des nombres de Bordeaux, 19(2), 357-372.
[3] Axler, C. (2021). On Robin's inequality. arXiv preprint arXiv:2110.13478.
[4] Rosser, J. B., \& Schoenfeld, L. (1962). Approximate formulas for some functions of prime numbers. Illinois Journal of Mathematics, 6(1), 64-94.
[5] Axler, C. New estimates for the n-th prime number, preprint, 2017. Available at arxiv. org/1706.03651.
Department of Mathematics, University of Saint Joseph Mbarara, p.o.box, 218 Mbarara UGANDA

E-mail address: elima@usj.ac.ug

