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Abstract—This study addresses Unmanned Surface Vessels 

(USVs) task assignment and path planning problems with 

minimizing the maximum completion time of USVs. First, a 

mathematical model is developed for the concerned problems. 

Second, an unsupervised learning algorithm, K-Means++, is 

employed to assign multi-tasks to USVs. According to the 

assignment results, five meta-heuristics are used to solve path 

planning problems for USVs. Finally, experiments are executed 

to solve 10 cases with different scales. The effectiveness of K-

Means++ for task assignment is verified. The results of five 

meta-heuristics for path planning are reported and analyzed. 

The harmony search algorithm has the strongest 

competitiveness among all compared algorithms for solving the 

concerned problems. 

Keywords—Unmanned surface vessel, Task assignment, Path 

planning, Meta-heuristics, K-Means++ 

I. INTRODUCTION 

In recent years, with the development of autonomous 
control technology, more and more scholars have focused on 
the research related to Unmanned Surface Vessels (USVs). 
USV is an intelligent vessel that can autonomously 
accomplish multiple tasks in complex scenarios, and is widely 
concerned in scientific research, environmental tasks, surface 
search and rescue, marine survey and other fields [1]. With the 
popularity of multi-USV systems, for the convenience of 
research, it is divided into two sub-problems: multi-task 
assignment and path planning. 

There are many methods that have been proven to be 
effective in solving task assignment problems, such as exact 
algorithms [2], meta-heuristics [3], etc. Unsupervised learning 
algorithms [4] as machine learning methods also have some 
advantages in solving task assignment problems. 
Unsupervised learning algorithms learn patterns from 
unlabeled data. The two main methods used in unsupervised 
learning are principal component analysis and cluster analysis. 
Cluster analysis is a branch of machine learning that divides 
similar objects into different groups or more subsets by static 
classification. The objects in the same subset have some 
similar properties [5]. 

Path planning problems are generally classified as global 
path planning and local path planning. Among the solution 
methods, the exact algorithms can obtain accurate results but 
consumes high computation cost. The A* algorithm can 
obtain the global optimal path in a limited search time for 
small-scale problems [6]. Q-Learning and DQN algorithms 
based on reinforcement learning can also be used for 

intelligent vessel path planning [7]. Solving global path 
planning problems are taken as traveling salesman problems, 
which is a typical NP-hard problem [8]. Meta-heuristics [9]-
[14] have some advantages for solving such problems and can 
obtain approximate optimal solutions for path planning 
problems. 

In this study, a combination of K-Means++ and meta-
heuristics is proposed to solve the task assignment and path 
planning problems of multiple USVs. K-Means++ is used to 
assign tasks for USVs, while five meta-heuristics are 
improved to solve the multi-USV path planning problems. 
The experimental results show that K-Means++ combined 
with the meta-heuristics have better effects and advantages in 
solving the task assignment and path planning problems of 
USVs. 

II. PROBLEM DESCRIPTION 

When multiple USVs are performing tasks, they are 
required to reach multiple task coordinate points. The task 
completion time includes exploration time and travel time. 
The task assignment among USVs and the execution sequence 
of tasks on each USV are what we need to study. The 
framework of the task assignment and path planning system 
for multiple USVs is shown in Fig. 1. 

 

Fig. 1. Framework of task assignment and path planning for multiple USVs. 

In the multi-USV task assignment and path planning  
problems, 𝑛  tasks are assigned to 𝑚(𝑚 ≥ 2)  USVs. we 
define the problems as an undirected graph, 𝐺 = {𝑉, 𝐸} , 
where the set of vertices is denoted as 𝑉 = {0,1,2, … , 𝑛} and 
the set of edges is denoted as 𝐸 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} . 
Vertex 0 represents the departure point and the other vertices 
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represent the task points. The set 𝐾 = {1,2, … , 𝑚} represents 
the route of USVs. The coordinate of the departure point is set 
to (0,0), and when a USV travels from task 𝑖 to task 𝑗, the 
traveling distance 𝑑𝑖𝑗  and traveling time 𝑡𝑖𝑗  are respectively 

calculated as follows:  

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2
 (1) 

𝑡𝑖𝑗 =
𝑑𝑖𝑗

𝑣
 (2) 

In this study, the exploration time is considered as a 
triangular fuzzy number. For a triangular fuzzy number, the 
addition and ranking are the most important operations to 
calculate the USVs’ completion time. In the concerned 
problems, the addition operation is used to compute the fuzzy 
exploration time while the ranking operation is used to 
compare the completion time and obtain the maximum fuzzy 
completion time. 

For two exploration times 𝑡�̅� = (𝑡�̅�1, 𝑡�̅�2, 𝑡�̅�3)  and 𝑡�̅� =
(𝑡�̅�1, 𝑡�̅�2, 𝑡�̅�3), the addition operation is shown as follows. 

𝑡�̅� + 𝑡�̅� = (𝑡�̅�1 + 𝑡�̅�1, 𝑡�̅�2 + 𝑡�̅�2, 𝑡�̅�3 + 𝑡�̅�3) (3) 

In the ranking operation, in order to compare two 
exploration times 𝑡�̅� = (𝑡�̅�1, 𝑡�̅�2, 𝑡�̅�3)  and 𝑡�̅� = (𝑡�̅�1, 𝑡�̅�2, 𝑡�̅�3) , 

three ranking criteria for the fuzzy exploration time are set as 
follows. 

𝐼𝑓  
(𝑡�̅�1 + 2𝑡�̅�2 + 𝑡�̅�3)

4

> (<)
(𝑡�̅�1 + 2𝑡�̅�2 + 𝑡�̅�3)

4
, 𝑡ℎ𝑒𝑛  𝑡�̅�  > (<)𝑡�̅� 

(4) 

𝐼𝑓  
(𝑡�̅�1 + 2𝑡�̅�2 + 𝑡�̅�3)

4
=

(𝑡�̅�1 + 2𝑡�̅�2 + 𝑡�̅�3)

4
 𝑎𝑛𝑑  

𝑡�̅�2 > (<)𝑡�̅�2,   𝑡ℎ𝑒𝑛  𝑡�̅�  > (<)𝑡�̅� 

(5) 

𝐼𝑓  𝑡�̅�2 = 𝑡�̅�2 𝑎𝑛𝑑 𝑡�̅�3 − 𝑡�̅�1 > (<)𝑡�̅�3 − 𝑡�̅�1,  

𝑡ℎ𝑒𝑛  𝑡�̅�  > (<)𝑡�̅� 
(6) 

The arrival time for task 𝑗 is calculated by Equation (7). 
When a USV does not have enough residual energy to 
complete the next task, it needs to return to the departure point 
for battery replacement. A round trip time is represented by 
Equation (8). The total time required to travel and explore is 
shown in Equation (9). The total round-trip time required for 
USV 𝑘 is shown in Equation (10). 

𝑇𝑗 = 𝑇𝑖 + 𝑡�̅� + 𝑡𝑖𝑗 , ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉\{0}, 𝑖 ≠ 𝑗 (7) 

𝑡𝑏 = 𝛽 ∗
∑ (√(𝑥𝑖 − 𝑥0)2 + (𝑦𝑖 − 𝑦0)2)𝑛

𝑖=0

𝑛 ∗ 𝑣
 (8) 

𝑊𝑘 = ∑ ∑ 𝑥𝑖𝑗𝑘(𝑡𝑖𝑗 + 𝑡�̅�),

𝑛

𝑗=0

𝑛

𝑖=0

∀𝑘 ∈ 𝐾, ∀𝑖, 𝑗 ∈ 𝑉 (9) 

𝑅𝑘 = 𝑁𝑘 ∗ 2𝑡𝑏 , ∀𝑘 ∈ 𝐾, ∀𝑖, 𝑗 ∈ 𝑉 (10) 

The objective of this study is to minimize the maximum 
completion time of USVs. To elaborate on this objective, a 
USV that takes the longest time to complete its own task is 
selected and then its completion time is minimized. Thus, the 
objective function and corresponding constraints for the 
multi-USV task assignment and path planning problems can 
be expressed as follows. 

min 𝐶𝑚𝑎𝑥 = 𝑀𝑎𝑥(𝐶1, 𝐶2, … , 𝐶𝑘) (11) 

𝐶𝑘 = 𝑊𝑘 + 𝑅𝑘, ∀𝑘 ∈ 𝐾 (12) 

∑ ∑ 𝑥𝑖𝑗𝑘

𝑛

𝑖=0

= 1

𝑚

𝑘=1

, ∀𝑗 ∈ 𝑉\{0} (13) 

∑ ∑ 𝑥𝑖𝑗𝑘

𝑛

𝑗=0

= 1,

𝑚

𝑘=1

∀𝑖 ∈ 𝑉\{0} (14) 

∑ 𝑥𝑖𝑗𝑘

𝑛

𝑖=0

− ∑ 𝑥𝑗𝑖𝑘

𝑛

𝑖=0

= 0, ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝑉\{0} (15) 

∑ 𝑥𝑖0𝑘

𝑛

𝑖=1

= ∑ 𝑥0𝑗𝑘

𝑛

𝑗=1

= 1, ∀𝑘 ∈ 𝐾 (16) 

(𝑁𝑘 + 1) ∗ 𝐵𝑘 ≥ ∑ ∑ 𝑥𝑖𝑗𝑘(𝑡𝑖𝑗 + 𝑡�̅�) 

𝑛

𝑗=0

𝑛

𝑖=0

+ 𝑁𝑘

∗ 2𝑡𝑏 , ∀𝑘 ∈ 𝐾, ∀𝑖, 𝑗 ∈ 𝑉 

(17) 

𝑚 ≥ 𝐾 (18) 

𝑥𝑖𝑗𝑘 ∈ {0,1}, ∀𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝐾 (19) 

𝑥𝑖𝑗𝑘 = 0, ∀𝑖, 𝑗 ∈ 𝑉, 𝑖 = 𝑗, ∀𝑘 ∈ 𝐾 (20) 

𝑡�̅� = 0, 𝑖 ∈ {0} (21) 
where 𝐶𝑘 is the completion time of USV 𝑘. Constraints (13)-
(15) indicate that each task must be accessed once by a USV. 
Constraint (16) denotes that the number of visits to the task 
area is equal to the number of departures from the task area. 
Constraint (17) ensures the capacity constraint of a USV. 
Constraint (18) limits the number of USVs. Constraints (19)-
(20) set the definition of decision variables. Constraint (21) 
means that the required exploration time for the departure 
point is 0. 

III. ALGORITHM DESIGN 

A. Solution Representation 

In the task assignment sub-problems, we use a clustering 
algorithm, K-Means++,  to assign tasks to USVs based on the 
information related to USVs and tasks.  

In the path planning of USVs, we encode one solution as 
a vector, denoted as 𝐿 = (0, 𝑆1, 0, 𝑆2, 0, … ,0, 𝑆𝑘) , where 𝑆𝑘 
denotes the task list of USV 𝑘 and 0 is used to separate the 
tasks between two USVs. The task sequence of USV 𝑘  is 
denoted as 𝑆𝑘 = (𝑆𝑘(1), 𝑆𝑘(2), … , 𝑆𝑘(𝑞)) , where 𝑞  is the 
number of tasks assigned to USV 𝑘. To describe the solution 
representation method more clearly, Fig. 2 shows a simple 
example. We assume that there are two USVs performing 10 
tasks. The assignment of 10 tasks on two USVs is denoted as 
𝑆1 = (2,4,5,7) , 𝑆2 = (1,3,6,8,9,10) , respectively. The 
corresponding solution can be denoted as 𝐿 =
(0,2,4,5,7,0,1,3,6,8,9,10). 

 

Fig. 2. Illustration of the solution. 

B. Meta-heuristics 

As population-based meta-heuristics, swarm and 
evolutionary algorithms [15]-[20] use mechanisms inspired by 
biological evolution and swarm behaviors, such as crossover, 
mutation, selection, flying and predation. The candidate 
solutions to the optimization problems play the role of 
individuals in the population of swarm and evolutionary 
algorithms, and the fitness function determines the quality of 
the solutions. After repeated execution of the above operators, 

𝑆1 𝑆2

2 4 5 7 1 3 6 8 9 10

0 2 4 5 7 0 1 3 6 8 9 10

Solution

Representation



the population evolves. Swarm and evolutionary algorithms 
aim to find, generate, adapt, or select heuristics that can 
provide sufficiently good solutions to an optimization 
problem. Especially, swarm and evolutionary algorithms are 
usually employed to solve the problems, where the problem-
specific information is incomplete or imperfect, and 
computational power is limited. The basic flow chart of the 
swarm and evolutionary algorithms is shown in Fig.3. 

 

Fig. 3. The basic flow chart of swarm and evolutionary algorithms. 

We use five swarm and evolutionary algorithms to solve 
the USVs path planning problems, namely genetic algorithm 
(GA), artificial bee colony (ABC), JAYA, particle swarm 
optimization (PSO), harmony search (HS).  

GA [21] is based on the evolutionary laws of organisms in 
nature and is commonly used to generate high-quality 
solutions to optimization and scheduling problems, relying on 
biologically inspired operators including selection, crossover 
and mutation. ABC [22], [23] is an optimization algorithm 
based on the intelligent foraging behavior of bee colonies. In 
ABC, the position of a food source represents a possible 
solution to an optimization problem, the amount of nectar 
from a food source corresponds to the quality (fitness) of the 
associated solution, and each food source is utilized by only 
one employed bee. JAYA [24], [25] has a very simple 
structure and is few of meta-heuristics without algorithm-
specific parameters. Many its variants have been proposed to 
solve different types of optimization problems. PSO [26] is a 
swarm intelligence-based meta-heuristic that can efficiently 
and globally optimize a problem with a large solution space 
and find candidate solutions without knowing much 
information about the problem. Inspired by the musical 
performance process, HS [27] consists of three operators: 
random search, harmonic memory consideration rule and 
pitch adjustment rule. The ways of handling exploration and 
exploitation with the three operators make the HS as a unique 
meta-heuristic. 

C. K-Means++ algorithm 

K-Means++ [28] is an algorithm for selecting initial values 
for the K-Means clustering algorithm. A disadvantage of the 
K-Means algorithm is that it is sensitive to the initialization of 
the prime or mean points, while the K-Means++ algorithm 
ensures a smarter initialization of the prime and improves the 
quality of the clusters. Algorithm 1 shows the basic steps of 
the K-Means++ algorithm. Since the data set is small, the data 
dimensionality is not high, and the location selection of the 
initialized centroid is more important. This study mainly uses 
K-Means++ algorithm to complete the clustering for USVs’ 
task assignment. 

Algorithm 1  K-Means++ algorithm 

 Input: 𝑋 (𝑛 datapoints), 𝑘 (number of centers) 

 Output: 𝐶 (set of initial centers) 

1: 
Sample a point 𝑐1 independently and uniformly at 

random from 𝑋. 

2: Let 𝐶 = {𝑐1} 

3: for i = 2 to 𝑘 do 

4:        for 𝑥 ∈ 𝑋 do 

5:              𝑝(𝑥) =
min
𝑐∈𝐶

‖𝑥−𝑐‖2

∑ min
𝑐∈𝐶

‖𝑦−𝑐‖2
𝑦∈𝑋

 

6:        end for 

7: 
       Sample a point 𝑐𝑖 from 𝑋, where every 𝑥 ∈ 𝑋 

has probability 𝑝(𝑥). 

8:        Update 𝐶 = 𝐶⋃{𝑐𝑖}. 

9: end for 

10: 
Run Lloyd’s algorithm initialized with center set 𝐶 

and output the result. 

D. Ensemble meta-heuristics and K-Means++ 

Based on the K-Means++ algorithm, it is possible to obtain 
the USVs’ task assignment results, which will be used in 
combination with the meta-heuristics to solve path planning 
problems for multiple USVs. The flow chart for the ensemble 
meta-heuristics and K-Means++ is shown in Fig. 4.  

In Fig. 4, the dashed boxed section on the left represents 
the process of completing the clustering using the K-Means++ 
algorithm and deriving the results of the task assignment. 
Based on the results of the task assignment, the operations in 
the right dashed box are performed. It represents the process 
of solving for multi-USV path planning problems using meta-
heuristics. 

IV. EXPERIMENTS AND DISCUSSION 

A. Experimental Setup 

The model for this study is involved in a collaboration with 
an USV company in China, and the data is obtained from the 
company's simulation platform. In this section, 10 cases with 
different scales are solved, each case consists of information 
about the USVs and  tasks. The USV information includes the 
number of USVs, speeds and battery capacity limitation, while 
the task information includes the number of tasks, the location 
of the task coordinates and the fuzzy time of exploration. The 
case scales are 2 × 20, 2 × 40, 2 × 80, 4 × 20, 4 × 40, 4 ×
80 , 8 × 20 , 8 × 40 , 8 × 80 , 8 × 120 , where 2 , 4  and 8 
represent the number of USVs, and 20 , 40 , 80  and 120 
represent the number of tasks, respectively. 

Set parameters and initialize 

population

Evaluate fitness value

Generate new solutions

Update population

Whether the termination 

conditions are met

Output results

Yes

No



In the experiments, all algorithms are coded in Python, and 
the experimental design is implemented on a computer with 
Intel Core i7-10750H @2.60 GHz, 16 GB memory, and 
Windows 10 operating system. 

In the clustering algorithm selection experiments, all the 
algorithms are repeated ten times to ensure the stability of the 
algorithm when performing task assignment. In the path 
planning experiment, all meta-heuristics are also repeated 10 
times, and the population size is set to 10 with the same 
computation time to ensure the fairness of the comparisons. 

B. Comparison of Clustering Algorithms 

First, we need to complete the task assignment using 
unsupervised learning algorithms. Suitable clustering 
algorithms help to obtain better quality scheduling results in 
path planning. Therefore, based on the algorithmic advantages, 
this study chooses the K-Means++ algorithm to complete the 

task assignment and compare it with five clustering algorithms, 
including K-Means, Mini Batch K-Means, Hierarchical 
Agglomerative Clustering (HAC), Spectral Clustering (SC), 
and Gaussian Mixed Model (GMM). 

In this experiment, the largest case with the 8 USVs and 
120 tasks is tested. After clustering the tasks and USVs several 
times, the maximum completion time of all USVs is obtained 
by using meta-heuristics with the same termination condition. 
Finally, the mean values and coefficient of variation (CV) are 
calculated as shown in TABLE I. The calculation method of 
the CV is as follows. 

𝐶𝑉 =
𝜎

𝜇
× 100% (22) 

where 𝜎 is the standard deviation of 10 repeated experiments 
and 𝜇 is the mean values. 

 

Fig. 4. The flow chart for the ensemble of meta-heuristics and K-Means++. 

TABLE I.  COMPARISON OF MEAN AND CV OF CLUSTERING ALGORITHMS COMBINED WITH META-HEURISTICS 

Algorithm 

K-Means++ K-Means 
Mini Batch 
K-Means 

HAC SC GMM 

Mean 
(s) 

CV 
(%) 

Mean 
(s) 

CV 
(%) 

Mean 
(s) 

CV 
(%) 

Mean 
(s) 

CV 
(%) 

Mean 
(s) 

CV 
(%) 

Mean 
(s) 

CV 
(%) 

GA 1055.6 0.22 1259.4 0.13 1346.3 0.16 1488.4 0.17 1185.2 0.21 2078.8 0.24 

ABC 1057.0 0.19 1261 0.17 1348.9 0.24 1486.4 0.43 1184.6 0.32 2076.1 0.27 

JAYA 1052.2 0.21 1254.2 0.20 1339.5 0.26 1478.8 0.28 1177 0.52 2057.6 0.22 

PSO 1064.6 0.48 1269.8 0.29 1362.3 0.52 1503.6 0.26 1204.7 0.68 2096.2 0.48 

HS 1051.4 0.18 1254.5 0.22 1339.5 0.23 1473.3 0.44 1174.6 0.25 2059.1 0.35 

Select the number of cluster center (k)

Select a random sample in the dataset as 

the first initial cluster center

Put object to closest cluster center

Select the sample with the greatest 

distance with probability as the new 

cluster center

Whether k cluster centers are identified

No

Recalculate the new cluster center

Yes

Create cluster based on smallest 

distance

Objects move to clusters

Get the results for k USVs and the 

assignment of tasks

Initialize parameters and population

Execute algorithm strategies

Evaluate the new solution

Whether the new solution is better 

than the current one

New solution replace the old one

Yes

Whether the termination conditions are met

No

Output the solution

Yes

No

Evaluate the initial solution



It can be seen that K-Means++ combined with all meta-
heuristics has achieved the best results and the 𝐶𝑉  of all 
algorithms are similar. Therefore, K-Means++ is chosen as the 
algorithm for task assignment in the following experiments. 

C. Comparisons of Meta-heuristics with K-means++ 

We solve the maximum completion time for all cases 
using five meta-heuristics based on the task assignment results 
by K-Means++ and perform 10 repeated experiments. Finally, 
the mean values and CV are calculated, which are shown in 
TABLE II. 

TABLE II.  COMPARISON OF MEAN AND CV OF ALL INSTANCES IN THE K-MEANS++ ALGORITHM COMBINED WITH THE FIVE META-HEURISTICS 

Instance 

GA + K-Means++ ABC + K-Means++ JAYA + K-Means++ PSO + K-Means++ HS + K-Means++ 

Mean 
(s) 

CV 
(%) 

Mean 
(s) 

CV 
(%) 

Mean 
(s) 

CV 
(%) 

Mean 
(s) 

CV 
(%) 

Mean 
(s) 

CV 
(%) 

2×20 841.0 1.30 851.2 1.38 839.5 2.28 937.5 5.02 828.0 1.42 

2×40 2414.1 1.68 2377.4 2.48 2267.6 1.62 2520.9 3.62 2294.2 2.14 

2×80 5350.3 1.04 5373.6 0.60 5158.0 1.48 5475.1 3.90 5192.3 1.24 

4×20 352.9 0.00 353.0 0.05 355.4 1.12 359.6 0.67 353.0 0.09 

4×40 913.2 0.43 916.2 0.62 908.8 0.80 938.8 1.23 886.9 1.92 

4×80 1504.3 1.18 1521.2 0.71 1470.0 0.53 1569.6 1.39 1476.3 1.21 

8×20 137.3 0.65 137.9 0.64 139.6 1.79 142.5 1.61 136.1 0.30 

8×40 875.9 0.41 881.3 0.36 875.7 0.61 894.3 0.67 867.9 0.43 

8×80 891.4 0.14 891.0 0.33 882.8 0.34 897.7 0.62 882.0 0.31 

8×120 1055.6 0.07 1056.1 0.18 1051.7 0.23 1063.2 0.36 1052.0 0.25 

Average  0.69  0.73  1.08  1.91  0.93 

It can be seen from TABLE II that the JAYA with K-
Means++ and the HS with K-Means++ obtain the best results 
in most cases, while the results of the GA and ABC algorithms 
with K-Means++ are relatively general. The results by PSO 
with K-Means++ are poor. Next, we perform a Friedman test 
on the average values of all meta-heuristics to test significant 
differences among these algorithms. The results are shown in 
TABLE III. The significance value (Asymp.Sig) obtained by 
the Friedman test is far less than the setting significance level 
(0.05). Therefore, there is a significant difference in the 
competitiveness of the five meta-heuristics with K-Means++. 

TABLE III.  THE STATISTICAL RESULTS OF THE FRIEDMAN TEST 

Test Statistics 

N 10 

Chi-Square 29.809 

df 4 

Asymp.Sig 0.000 

 

 

Fig. 5. The Nemenyi post-hoc test ranking. 

 

Fig. 6. Friedman’s two-way analysis of variance by ranks. 

The five algorithms are ranked across the 10 cases as 
shown in the Fig. 5. The meta-heuristics with smaller ranking 
values have better competitiveness. Among the five meta-
heuristics, the HS with K-Means++ outperforms the others 
with the minimum mean rank value (1.55). JAYA follows 
closely (2.00). GA (2.90) has a similar performance to ABC 
(3.55), and PSO has the worst mean rank value (5.00).  

Fig. 6 presents Friedman’s two-way analysis of variance 
by ranks. As shown in Fig. 6, the HS with K-Means++ has the 
best performance on 5 out of 10 cases and does not obtain the 
worst results for any instance. The JAYA with K-Means++ 
ranks second, GA and ABC have similar competitiveness and 
are better than PSO. 

V. CONCLUSION AND FUTURE WORKS 

This study presents an unsupervised learning algorithm, 
K-Means++, combined with meta-heuristics to solve the task 
assignment and path planning problems for multiple USVs. K-
Means++ is used to cluster USVs and tasks, and then the meta-
heuristics are used to optimize the completion time of USVs 
according to the clustering results. Comparative experiments 
on clustering effects are designed and the performance of K-
Means++ is verified. Further experiments are conducted on 10 
cases with different scales, yielding the best results for HS 
with K-Means++ among the five meta-heuristics. Based on 



the results of several experiments, it is demonstrated that the 
K-Means++ combined with meta-heuristics has strong 
performance and advantages in solving the USVs scheduling 
problems. 

In the future, we will consider more real-life constraints 
for the concerned problems, and employ reinforcement 
learning algorithms, such as the Q-Learning, to further 
improve the performance of the meta-heuristics. In addition, 
this research can be generalized to be applied to task 
assignment and path planning for unmanned devices such as 
unmanned vehicles, e.g., for loading and unloading of goods 
by unmanned vehicles. The research ideas in this study can 
also be applied to various multiple traveling salesman 
problems. 
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