Download PDFOpen PDF in browser

Development of Decision Support Tool for Evaluation of Urban Water System Metabolism Efficiency

10 pagesPublished: September 20, 2018

Abstract

The revitalization of Toronto’s waterfront presents the largest urban redevelopment project currently underway in North America. With respect to planning the waterfront’s urban water systems (UWS), a number of studies considered a range of criteria in search for sustainable alternatives. However, a comprehensive assessment of the integrated source-drinking-wastewater-stormwater systems over their life cycles has not been developed. According to the main postulates of the integrated approach, hybrid water systems can offer potentially more sustainable solutions than traditional centralized systems. This paper discusses the development process of a decision support tool designed to facilitate evaluation of alternatives based on UWS metabolism concept while addressing some typical challenges of hydroinformatics. This decision-making support tool analyses and compares the sustainability performance of alternative decentralized solutions against a baseline conventional approach on a neighbourhood level. The tool uses a set of criteria, adopted by the large group of stakeholders involved in the development process, that are not typically considered in the decision-making process, such as energy savings, greenhouse gas (GHG) emissions, climate change resiliency, chemical use, and nutrient recovery.

Keyphrases: hybrid systems, integrated urban water management, water metabolism

In: Goffredo La Loggia, Gabriele Freni, Valeria Puleo and Mauro De Marchis (editors). HIC 2018. 13th International Conference on Hydroinformatics, vol 3, pages 1547-1556.

BibTeX entry
@inproceedings{HIC2018:Development_Decision_Support_Tool,
  author    = {Vladimir Nikolic and Darko Joksimovic},
  title     = {Development of Decision Support Tool for Evaluation of Urban Water System Metabolism Efficiency},
  booktitle = {HIC 2018. 13th International Conference on Hydroinformatics},
  editor    = {Goffredo La Loggia and Gabriele Freni and Valeria Puleo and Mauro De Marchis},
  series    = {EPiC Series in Engineering},
  volume    = {3},
  publisher = {EasyChair},
  bibsource = {EasyChair, https://easychair.org},
  issn      = {2516-2330},
  url       = {/publications/paper/Gbk1},
  doi       = {10.29007/r6xs},
  pages     = {1547-1556},
  year      = {2018}}
Download PDFOpen PDF in browser