Download PDFOpen PDF in browserPrediction and Control of Stochastic Agents Using Formal Methods6 pages•Published: October 23, 2023AbstractIn this paper, we propose an innovative approach that incorporates formal verification methods into the training process of stochastic Reinforcement Learning (RL) agents. Our method allows for the analysis and improvement of the learning process of these agents. Specifically, we demonstrate the capability to evaluate RL policies (prediction) and opti- mize them (control) using different model checkers. The integration of formal verification tools with stochastic RL agents strengthens the applicability and potential of our approach, paving the way for more robust and reliable learning systems.Keyphrases: formal verification, model checking., reinforcement learning In: Nina Narodytska, Guy Amir, Guy Katz and Omri Isac (editors). Proceedings of the 6th Workshop on Formal Methods for ML-Enabled Autonomous Systems, vol 16, pages 29-34.
|