Download PDFOpen PDF in browser

Logical Modeling of Adiabatic Logic Circuits using VHDL

10 pagesPublished: November 2, 2021

Abstract

The underlying nature of adiabatic circuits is most accurately characterized at the circuit level as it is for traditional technologies. In order to scale system designs for adiabatic logic technologies, modeling of adiabatic circuits at the logic level is necessary. Logic level models of adiabatic logic circuits can facilitate the design, development, and verification of large scale digital systems that may be infeasible using circuit simulators. Adiabatic logic circuits can be powered with a four stage power clock consisting of idle, charge, hold, and recover stages that provides for adiabatic charging and charge recovery to give adiabatic circuits their low power operation. By both discretizing the temporal aspects of the power clock and the logic values, a logical model of adiabatic circuit operation is proposed. Using the expressive capabilities of Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL), the salient aspects of adiabatic circuit models can be captured. In this work, a VHDL framework is defined for modeling adiabatic logic circuits & systems and its use is demonstrated in several example adiabatic logic circuits.

Keyphrases: digital circuits, digital simulation, Logical model, Low power electronics, VHDL

In: Yan Shi, Gongzhu Hu, Quan Yuan and Takaaki Goto (editors). Proceedings of ISCA 34th International Conference on Computer Applications in Industry and Engineering, vol 79, pages 30--39

Links:
BibTeX entry
@inproceedings{CAINE2021:Logical_Modeling_of_Adiabatic,
  author    = {Lee Belfore},
  title     = {Logical Modeling of Adiabatic Logic Circuits using VHDL},
  booktitle = {Proceedings of ISCA 34th International Conference on Computer Applications in Industry and Engineering},
  editor    = {Yan Shi and Gongzhu Hu and Quan Yuan and Takaaki Goto},
  series    = {EPiC Series in Computing},
  volume    = {79},
  pages     = {30--39},
  year      = {2021},
  publisher = {EasyChair},
  bibsource = {EasyChair, https://easychair.org},
  issn      = {2398-7340},
  url       = {https://easychair.org/publications/paper/tsvV},
  doi       = {10.29007/6wln}}
Download PDFOpen PDF in browser