Download PDFOpen PDF in browserParameter Uncertainties Assessment in a Conceptual Rainfall-Runoff Model Using Bayesian Paradigm7 pages•Published: September 20, 2018AbstractIn this study, the calibration of the rain-flow conceptual model UFGModel1.1 is carried out, and the uncertainties in the predictions of flow rates associated with the parameter set estimates are evaluated by the Generalized Likelihood Uncertainty Estimation (GLUE) and Differential Evolution Adaptive Metropolis (DREAM). The water catchment area of the Botafogo Stream, located in the city of Goiânia, Brazil, was selected as experimental for the development of the study, in which a more distributed spatial discretisation degree (thirteen planes and six channels) was adopted for this basin. The results showed that the various parameter sets were considered optimal, allowing high modelling efficiency, despite the loss of the quality of the simulations and uncertainty increase when using the GLUE.Keyphrases: mc, mcmc, runoff model, statistical algorithm In: Goffredo La Loggia, Gabriele Freni, Valeria Puleo and Mauro De Marchis (editors). HIC 2018. 13th International Conference on Hydroinformatics, vol 3, pages 1624-1630.
|