Download PDFOpen PDF in browserCurrent version

Sharp-P and the Birch and Swinnerton-Dyer Conjecture

EasyChair Preprint 9368, version 2

Versions: 123history
4 pagesDate: November 26, 2022

Abstract

Assuming the Birch and Swinnerton-Dyer conjecture, an odd square-free integer $n$ is a congruent number if and only if the number of triplets of integers $(x, y, z)$ satisfying $2 \cdot x^{2} + y^{2} + 8 \cdot z^{2} = n$ is twice the number of triplets satisfying $2 \cdot x^{2} + y^{2} + 32 \cdot z^{2} = n$ due to Tunnell's theorem. However, we show these equations are instances of a variant of counting solutions of the homogeneous Diophantine equations of degree two which is a $\textit{\#P--complete}$ problem. Deciding whether $n$ is congruent or not is a problem in $NP$ since congruent numbers could be easily checked by a congruum, because of every congruent number is a product of a congruum and the square of a rational number. We conjecture that if $P = NP$ and $FP \neq \#P$, then the Birch and Swinnerton-Dyer conjecture would be false.

Keyphrases: Boolean formula, completeness, complexity classes, polynomial time

BibTeX entry
BibTeX does not have the right entry for preprints. This is a hack for producing the correct reference:
@booklet{EasyChair:9368,
  author    = {Frank Vega},
  title     = {Sharp-P and the Birch and Swinnerton-Dyer Conjecture},
  howpublished = {EasyChair Preprint 9368},
  year      = {EasyChair, 2022}}
Download PDFOpen PDF in browserCurrent version