Download PDFOpen PDF in browserData-Driven Decision-Making: Big Data Analytics & Machine Learning in M&A and IT Supply ChainEasyChair Preprint 120807 pages•Date: February 12, 2024AbstractIn today's rapidly evolving business landscape, the effective utilization of data has become paramount for informed decision-making. This paper explores the integration of big data analytics and machine learning techniques in the context of mergers and acquisitions (M&A) and the IT supply chain. By harnessing the potential of these advanced technologies, organizations can enhance their decision-making processes, improve operational efficiency, and gain a competitive edge in the market. The paper examines how data-driven approaches empower stakeholders to make more informed decisions throughout the M&A lifecycle, from due diligence to post-merger integration. Additionally, it explores the application of big data analytics and machine learning in optimizing IT supply chain operations, including inventory management, logistics, and demand forecasting. Through real-time data analysis and predictive modeling, businesses can better anticipate market trends, mitigate risks, and capitalize on new opportunities. The synergy between data-driven decision-making, big data analytics, and machine learning presents a transformative opportunity for organizations operating in the M&A and IT supply chain domains. Keyphrases: Big Data Analytics, Business Transformation, Decision Optimization, IT supply chain, Mergers and Acquisitions (M&A), Strategic Initiatives, data-driven decision making, machine learning
|