Download PDFOpen PDF in browser

Proposed Proof of the Riemann Hypothesis

EasyChair Preprint 6967

3 pagesDate: November 1, 2021

Abstract

For every prime number $q_{n}$, we define the inequality $\prod_{q \leq q_{n}} \frac{q}{q-1} > e^{\gamma} \times \log\theta(q_{n})$, where $\theta(x)$ is the Chebyshev function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. This is known as the Nicolas inequality. The Nicolas criterion states that the Riemann hypothesis is true if and only if the Nicolas inequality is satisfied for all primes $q_{n} > 2$. We prove indeed that the Nicolas inequality is satisfied for all primes $q_{n} > 2$. In this way, we show that the Riemann hypothesis is true.

Keyphrases: Chebyshev function, Nicolas inequality, Riemann hypothesis, Riemann zeta function, prime numbers

BibTeX entry
BibTeX does not have the right entry for preprints. This is a hack for producing the correct reference:
@booklet{EasyChair:6967,
  author    = {Frank Vega},
  title     = {Proposed Proof of the Riemann Hypothesis},
  howpublished = {EasyChair Preprint 6967},
  year      = {EasyChair, 2021}}
Download PDFOpen PDF in browser