Download PDFOpen PDF in browsergcn.MOPS: Accelerating cn.MOPS with GPU12 pages•Published: March 18, 2019Abstractcn.MOPS is a frequently cited model-based algorithm used to quantitatively detect copy-number variations in next-generation, DNA-sequencing data. Previous work has implemented the algorithm as an R package and has achieved considerable yet limited performance improvement by employing multi-CPU parallelism (maximum achievable speedup was experimentally determined to be 9.24). In this paper, we propose an alternative mechanism of process acceleration. Using one CPU core and a GPU device in the proposed solution, gcn.MOPS, we achieve a speedup factor of 159 and reduce memory usage by more than half compared to cn.MOPS running on one CPU core.Keyphrases: branch divergence, coalesced memory access, copy number variation, host/device concurrency, parallel processing In: Oliver Eulenstein, Hisham Al-Mubaid and Qin Ding (editors). Proceedings of 11th International Conference on Bioinformatics and Computational Biology, vol 60, pages 15-26.
|