Download PDFOpen PDF in browserComparative Analysis of Length Deformation in Classical and Relativistic MechanicsEasyChair Preprint 133596 pages•Date: May 18, 2024AbstractThis study presents a comparative analysis of length deformation in Classical and Relativistic Mechanics, specifically investigating 10-gram objects accelerating to 1% of the speed of light. By employing Hooke's Law in Classical Mechanics and the Relativistic Lorentz Factor, the research explores the implications of acceleration dynamics and the limitations inherent in Relativistic Mechanics. The results reveal significant differences in predicted length changes between the two frameworks, emphasizing the necessity of considering relativistic effects beyond velocity alone. This study underscores the critical importance of addressing the incomplete treatment of acceleration dynamics in Relativistic Mechanics to achieve a more accurate depiction of length deformation in high-speed scenarios.This study presents a comparative analysis of length deformation in Classical and Relativistic Mechanics, specifically investigating 10-gram objects accelerating to 1% of the speed of light. By employing Hooke's Law in Classical Mechanics and the Relativistic Lorentz Factor, the research explores the implications of acceleration dynamics and the limitations inherent in Relativistic Mechanics. The results reveal significant differences in predicted length changes between the two frameworks, emphasizing the necessity of considering relativistic effects beyond velocity alone. This study underscores the critical importance of addressing the incomplete treatment of acceleration dynamics in Relativistic Mechanics to achieve a more accurate depiction of length deformation in high-speed scenarios. Keyphrases: Hooke's law, Length Deformation, Lorentz Factor, Relativistic Mechanics, acceleration, classical mechanics
|