Download PDFOpen PDF in browserActuation and Control of a Steerable Catheter for Mitral Valve RepairEasyChair Preprint 90054 pages•Date: October 5, 2022AbstractIn the field of Structural Heart Diseases, Mitral Regurgitation’s incidence is rising because of an aging population worldwide, and it has reached an annual mortality rate near 34%. The procedures of Structural Intervention Cardiology have enlarged the number of treated patients, since their minimally invasive and trans-catheter approach. To provide a forward step-change in this procedure, the aim of this work is to improve the use of the commercially available MitraClip system®, suggesting an innovative robot-assisted platform with autonomous control for the aforementioned system. The presented methodology is constituted of two phases: in the first one, we design, in the Solidworks® environment, 3D print and integrate the mechanical support with electrical motors and micro-controller devoted to catheter’s steering. In the second phase, we develop the closed-loop position control to improve the accuracy in the autonomous positioning of the catheter. The described approach was tested to demonstrate its feasibility and dexterity: a position accuracy of 1.1±0.54 mm in following a given optimal trajectory was obtained. Keyphrases: Structural Intervention Cardiology, control algorithm, robot assisted surgery, tendon-driven system
|